0000000000016714
AUTHOR
D. Bazzacco
Response of AGATA segmented HPGe detectors to gamma rays up to 15.1MeV
WOS: 000314826000009
Stable triaxiality at the highest spins in138Ndand139Nd
The nuclei ${}^{138}\mathrm{Nd}$ and ${}^{139}\mathrm{Nd}$ have been studied at very high spins via the ${}^{48}\mathrm{Ca}{+}^{94}\mathrm{Zr}$ reaction. Several new rotational bands were observed, four in ${}^{138}\mathrm{Nd}$ and two in ${}^{139}\mathrm{Nd}.$ The ${J}^{(2)}$ moments of inertia calculated from the observed $\ensuremath{\gamma}$-ray energies are very small and almost constant, indicating that these bands are triaxial. Cranked Nilsson-Strutinsky calculations reproduce the general behavior of the bands, supporting this interpretation and suggesting an approximately constant $\ensuremath{\gamma}$ value of $\ensuremath{\sim}+35\ifmmode^\circ\else\textdegree\fi{}$ over a large s…
Structure of the As, Ge, Ga nuclei
Abstract The level structures of the N = 50 83As, 82Ge, and 81Ga isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA–PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the γ-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of 78Ni ( Z = 28 ). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28 . This value, in a good agreement with the prediction of the fini…
Position resolution of the prototype AGATA triple-cluster detector from an in-beam experiment
AGATA belongs to a new generation of gamma-ray detector arrays for nuclear spectroscopy at present in its final stage of development. The detectors of these new arrays will be based on 36-fold electronically segmented coaxial germanium diodes operated in position sensitive mode. An in-beam test of the AGATA prototype triple cluster detector was carried out with the purpose of demonstrating the feasibility of such detectors and in order to measure the most sensitive parameters for their overall performance. An inverse kinematics reaction was performed, using a (48)Ti beam at an energy of 100MeV, impinging on a deuterated titanium tat-get. The results from the analysis of the experimental dat…
Isospin Character of Low-Lying Pygmy Dipole States inPb208via Inelastic Scattering ofO17Ions
The properties of pygmy dipole states in Pb-208 were investigated using the Pb-208(O-17, O-17'gamma) reaction at 340 MeV and measuring the gamma decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted gamma rays and of the scattered particles were measured. The results are compared with (gamma, gamma') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2(+) and 3(-) states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first t…
Shape coexistence in neutron-deficient Hg188 investigated via lifetime measurements
Background: Shape coexistence in the Z≈82 region has been established in mercury, lead, and polonium isotopes. For even-even mercury isotopes with 100≤N≤106 multiple fingerprints of this phenomenon are observed, which seems to be no longer present for N≥110. According to a number of theoretical calculations, shape coexistence is predicted in the Hg188 isotope. Purpose: The aim of this work was to measure lifetimes of excited states in Hg188 to infer their collective properties, such as the deformation. Extending the investigation to higher-spin states, which are expected to be less affected by band-mixing effects, can provide additional information on the coexisting structures. Methods: The…
The GALILEO γ-ray array at the Legnaro National Laboratories
Abstract GALILEO, a new 4 π high-resolution γ -detection array, based on HPGe detectors, has been developed and installed at the Legnaro National Laboratories. The GALILEO array greatly benefits from a fully-digital read-out chain, customized DAQ, and a variety of complementary detectors to improve the resolving power by the detection of particles, ions or high-energy γ -ray transitions. In this work, a full description of the array, including electronics and DAQ, is presented together with its complementary instrumentation.
On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI
International audience; The Facility for Antiproton and Ion Research (FAIR), under construction at Darmstadt will provide intense relativistic beams of exotic nuclei at its Superconducting-FRagment Separator. High-resolution in-beam γ-ray spectroscopy will be performed in the HISPEC experiment, using the European Advanced GAmma-ray Tracking Array (AGATA). The PreSPEC-AGATA campaign is the predecessor of HISPEC and runs from 2012 to 2014 at GSI Helmholtzzentrum für Schwerionenforschung GmbH. Up to19 AGATA modules were used at GSI's F Ragment Separator in 2012. We report on the status of the experiment including preliminary results from performance commissioning.
Isomers and high-spin structures in the N=81 isotones Xe135 and Ba137
The high-spin structures of the N = 81 isotones 135Xe and 137Ba are investigated after multinucleontransfer (MNT) and fusion-evaporation reactions. Both nuclei are populated in (i) 136Xe+238U and (ii) 136Xe+208Pb MNT reactions employing the high-resolution Advanced Gamma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (iii), in the 136Xe+198Pt MNT reaction employing the -ray array GAMMASPHERE in combination with the gas detector array Chico, and (iv) via a 11B+130Te fusion-evaporation reaction. The high-spin level schemes of 135Xe and 137Ba are considerably extended to higher energies. The 2058-keV (19=2 ) state in 135Xe is identified as an isomer, completing the systema…
Maximally aligned states in the proton drip line nucleus 106Sb
High-spin states in Sb-106 have been investigated in the Fe-54(Ni-58, 1α 1p1n) reaction by in-beam γ-spectroscopic methods using the EUROBALL detector array equipped with charged particle and neutr ...
Lifetime measurements in neutron-rich63,65Co isotopes using the AGATA demonstrator
Lifetimes of the low-lying (11/2-) states in 63,65Co have been measured employing the recoil distance doppler shift method (RDDS) with the AGATA γ-ray array and the PRISMA mass spectrometer. These nuclei were populated via a multinucleon transfer reaction by bombarding a 238U target with a beam of 64Ni. The experimental B(E2) reduced transition probabilities for 63,65Co are well reproduced by large-scale shell-model calculations that predict a constant trend of the B(E2) values up to the N=40 67Co isotope
Influence of fusion barrier distributions on spin populations
Abstract Heavy-ion fusion barrier distributions are now routinely obtained directly from experimental data. By measuring the total γ -ray multiplicity for the 58 Ni + 60 Ni system, which has a striking yet well understood barrier distribution, we show that some evidence of the barrier structures is present in the derived spin populations. In particular, very high spins can be populated at energies rather close to (and even below) the ‘nominal’ Coulomb barrier.
Identification of yrast high-Kintrinsic states inOs188
The high-spin structure of the $Z=76$ nucleus $^{188}\mathrm{Os}$ has been studied using the incomplete fusion reaction $^{7}\mathrm{Li}+^{186}\mathrm{W}$. A ${K}^{\ensuremath{\pi}}={10}^{+}$ band has been established up to spin $({24}^{+})$ and its crossing with the ground-state band has been studied. In addition, intrinsic high-$K$ states have been identified and on top of two of them, ${K}^{\ensuremath{\pi}}={7}^{\ensuremath{-}}$ and ${K}^{\ensuremath{\pi}}={10}^{\ensuremath{-}}$, regular bands have been observed. The ${K}^{\ensuremath{\pi}}={16}^{+}$ and ${K}^{\ensuremath{\pi}}={18}^{+}$ states are yrast whereas the ${K}^{\ensuremath{\pi}}={14}^{+}$ level lies only 33 keV above the yras…
Lifetime measurements of excited states in neutron-rich nuclei around 48 Ca
The lifetimes of the first excited states of the N = 30 isotones 50Ca and 51Sc and the Z = 18 isotopes 44−46Ar isotopes have been determined using a novel technique that combines the Recoil Distance Doppler Shift method with the CLARA-PRISMA spectrometers in multinucleon transfer reactions. The results allow determinination of the effective charges above 48Ca and test the strength of the N = 28 magic number when moving away from the stability line. Gadea Raga, Andrés, Gadea.Andres@ific.uv.es ; Algora, Alejandro, Alejandro.Algora@ific.uv.es ; Rubio Barroso, Berta, Berta.Rubio@ific.uv.es
Conceptual design and infrastructure for the installation of the first AGATA sub-array at LNL
WOS: 000295765100014
Pronounced shape change induced by quasiparticle alignment
Mean lifetimes of high-spin states of Kr-74 have been determined using the Doppler-shift attenuation method. The high-spin states were studied using the Ca-40(Ca-40, alpha 2p) reaction at a beam energy of 160 MeV with the GASP gamma-ray spectrometer. The ground-state band and negative parity side band show the presence of three different configurations in terms of transitional quadrupole deformations. A dramatic shape change was found along the ground-state band after the S-band crossing. The deduced quadrupole deformation changes are well reproduced by cranked Woods-Saxon Strutinsky calculations.
Neutron Excitations Across the N=50 Shell Gap in 102In
The structure of In-102 has been investigated by in-beam gamma-spectroscopic methods. Knowledge on the excited states of this nucleus has significantly been extended. Three cascades of transitions were observed to exceed the spin-energy domain spanned by the pig(9/2)(-1)v(d(5/2),g(7/2))(3) configurations. The new high spin states at similar to 4 MeV excitation energy could be assigned to the pig(9/2)(-1)v(d(5/2), g(7/2))(2)h (11/2) configuration, while at least those at 4.733, 5.192 and 5.853 MeV most likely arise from the vg(9/2) --> vd(5/2), g(7/2) one-particle-one-hole excitation across the N = 50 shell closure.
'beta'-decay studies of neutron-rich 'TL', 'PB', and 'BI' isotopes
The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft fur Schwerionenforschung laboratory to investigate the β decay of neutron-rich nuclei just beyond 208Pb. This paper reports on β-delayed γ decays of 211-213Tl, 215Pb, and 215-219Bi de-exciting states in the daughters 211-213Pb, 215Bi, and 215-219Po. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden β transitions in this mass region is discussed. © 2014 American Physical Society.
Lifetime measurement of neutron-rich even-even molybdenum isotopes
D. Ralet et al. -- 11 pags., 10 figs., 3 tabs.
Conceptual design and performance study for the first implementation of AGATA at the in-flight RIB facility of GSI
Abstract The main objective of the Advanced GAmma Tracking Array (AGATA) is the investigation of the structure of exotic nuclei at the new generation of RIB facilities. As part of the preparatory phase for FAIR-NUSTAR, AGATA is going to be installed at the FRS fragmentation facility of the GSI centre for an experimental campaign to be performed in 2012 and 2013. Owing to its γ - ray tracking capabilities and the envisaged enhancement in resolving power, a series of in-flight γ - ray spectroscopy experiments are being planned. The present work describes the conceptual design of this first implementation of AGATA at GSI-FRS, and provides information about the expected performance figures. Acc…
Multiple register synchronization with a high-speed serial link using the Aurora protocol
In this work, the development and characterization of a multiple synchronous registers interface communicating with a high-speed serial link and using the Aurora protocol is presented. A detailed description of the developing process and the characterization methods and hardware test benches are also included. This interface will implement the slow control busses of the digitizer cards for the second generation of electronics for the Advanced GAmma Tracking Array (AGATA).
Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O
L. Pellegri et al. ; 5 pags. ; 6 figs. ; open access article under the CC BY license. Funded by SCOAP3
Population of neutron-rich nuclei around 48ca with deep inelastic collisions
The deep inelastic reaction 48Ca+64Ni at 6 MeV/A has been studied using the CLARA–PRISMA setup. Angular distributions for pure elastic scattering and total cross-sections of the most relevant transfer channels have been measured. The experimental results are compared with predictions from a semiclassical model, showing good agreement for the presently analyzed few neutrons transfer channels. The decay of the most intense reaction products has also been studied, giving indications of the population of states with very short lifetimes. Gadea Raga, Andrés, Gadea.Andres@ific.uv.es
Study of medium-spin states of neutron-rich 87, 89, 91Rb isotopes
International audience; Excited states of the rubidium isotopes$_{37}^{87, 89, 91}$Rb have been studied at the INFN Legnaro National Laboratory. Measurements of the $\gamma$ -ray decay of fragments produced in binary grazing reactions resulting from the interaction of a beam of 530 MeV$^{96}$Zr ions with a$^{124}$Sn target have been complemented by studies of the $\gamma$ -ray decay of fission fragments produced in the interaction of a beam of 230 MeV$^{36}$S ions with a thick$^{176}$Yb target. The structure of the yrast states of$_{37}^{87, 89, 91}$Rb has been discussed within the context of spherical shell-model and cranked Nilsson-Strutinsky calculations.
Plunger Lifetime Measurements in 102Pd
Recently, an intense experimental effort has been devoted to the search of empirical proofs of critical‐point symmetries in nuclear structure. These symmetries describe shape‐phase transitions and provide parameter‐free predictions (up to over‐all scale factors) for excitation spectra and B(E2) values. This contribution reports on recent plunger‐lifetime measurements ON 102Pd carried out at LNL, Legnaro, with the Cologne plunger apparatus coupled to the GASP spectrometer and using the 92Zr(13C,3n)102Pd reaction at 48 MeV. According to the results of our measurements, 102Pd is so far the best known paradigm of the E(5) critical‐point symmetry.
High-spin structures in Xe132 and Xe133 and evidence for isomers along the N=79 isotones
Author(s): Vogt, A; Siciliano, M; Birkenbach, B; Reiter, P; Hadynska-Klȩk, K; Wheldon, C; Valiente-Dobon, JJ; Teruya, E; Yoshinaga, N; Arnswald, K; Bazzacco, D; Blazhev, A; Bracco, A; Bruyneel, B; Chakrawarthy, RS; Chapman, R; Cline, D; Corradi, L; Crespi, FCL; Cromaz, M; De Angelis, G; Eberth, J; Fallon, P; Farnea, E; Fioretto, E; Fransen, C; Freeman, SJ; Fu, B; Gadea, A; Gelletly, W; Giaz, A; Gorgen, A; Gottardo, A; Hayes, AB; Hess, H; Hetzenegger, R; Hirsch, R; Hua, H; John, PR; Jolie, J; Jungclaus, A; Karayonchev, V; Kaya, L; Korten, W; Lee, IY; Leoni, S; Liang, X; Lunardi, S; MacChiavelli, AO; Menegazzo, R; Mengoni, D; Michelagnoli, C; Mijatovic, T; Montagnoli, G; Montanari, D; Muller-…
Multinucleon transfer reactions: an overview of recent results
Large acceptance magnetic spectrometers, such as PRISMA installed at Laboratori Nazionali di Legnaro, gave a further boost to the renewed interest for multinucleon transfer reactions in the last decade. The large solid angles of these devices and the high resolving powers of their detection systems allowed to investigate the transfer process around and well below the Coulomb barrier and to perform nuclear structure studies in several mass regions of the nuclide chart when coupled with large γ-ray arrays such as CLARA. Selected results obtained with the PRISMA-CLARA set-up in odd argon isotopes populated by using the multinucleon transfer process and in sub- barrier transfer measurements are…
Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array
In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53 per mil at an energy of 1.33 MeV.
Conceptual design of the AGATA 1$\pi$ array at GANIL
The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on sim…
Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in 106,108Sn
The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. the nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. the emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B…
Fully digital FPGA-based Front-End Electronics for the GALILEO array
In this work we present the fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. The digital processing of the data from the GALILEO germanium detectors has demonstrated the capability to achieve an energy resolution of 1.53‰ at an energy of 1.33 MeV.
Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions
A measurement of the high-lying states in 208Pb has been made using 17O beams at 20 MeV/u. The gamma decay following inelastic excitation was measured with the detector system AGATA Demonstrator based on segmented HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators and to an array of Si detectors. Preliminary results in comparison with (γ,γ’) data, for states in the 5-8 MeV energy interval, are presented.
Spin distributions at the Coulomb barrier in the $^{58}$Ni+$^{60}$Ni fusion reaction from gamma-ray multiplicity measurements
Abstract Heavy-ion fusion barrier distributions are now routinely obtained directly from experimental data. Measurements of the total γ-ray multiplicity for the fusion channels of the 58 Ni + 60 Ni system, which has striking yet well understood barrier structures, confirm the theoretical predictions that very high spins can be populated at energies close to (and even below) the nominal Coulomb barrier. The mapping from multiplicities to spin populations shows that structures in the barrier distribution are still evident in the γ-ray results.
Hindered Gamow-Teller Decay to the Odd-OddN=ZGa62: Absence of Proton-NeutronT=0Condensate inA=62
Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T=1, Jπ=0+ ground state of Ge62 into excited states of the odd-odd N=Z nucleus Ga62. The experiment is performed at GSI Helmholtzzentrum fur Schwerionenforschung with the Ge62 ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T1/2=82.9(14) ms is measured for the Ge62 ground state. Six excited states of Ga62, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical pred…
High-spin structure of ^{95}Pd
The level scheme of the neutron-deficient nucleus ${}^{95}$Pd has been studied with the ${}^{58}$Ni + ${}^{40}$Ca fusion-evaporation reaction at 135 MeV with the GASP $\ensuremath{\gamma}$-ray array, the ISIS silicon ball, and the N-ring neutron detector. Excited levels with spins at least up to $\frac{45}{2}\ensuremath{\hbar}$ are reported for both parities. The observed experimental data are compared to large-scale shell-model calculations.
Probing the nature of particle–core couplings in 49Ca with γ spectroscopy and heavy-ion transfer reactions
Neutron rich nuclei around 48Ca have been measured with the CLARA–PRISMA setup, making use of 48Ca on 64Ni binary reactions, at 5.9 MeV/A. Angular distributions of γ rays give evidence, in several transfer channels, for a large spin alignment (≈70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of 49Ca, states arising from different types of particle–core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle–vibration coupling calculations are used to pin down the nature of the states. Evidence is found fo…
Oblate Collectivity in the Yrast Structure of 194Pt
A deep inelastic reaction using a 460 MeV 82Se beam incident upon a thick 192Os target was performed at the Legnaro National Laboratory, Italy. The resulting γ-decays were measured using the GASP array. Results for 194Pt extend the known level scheme of the yrast structure from spin I = (12 ħ) to (20 ħ). The irregularities in the sequence of the new transition energies and total Routhian surface calculations show a breakdown in collectivity with an yrast oblate shape remaining to high spin. Rubio Barroso, Berta, Berta.Rubio@ific.uv.es
Graphical user interface for serial protocols through a USB link
In this work, a graphical user interface to communicate with three common serial protocols is presented. With one tool, the user may be able to control several evaluation boards from different manufacturers or evaluate and program integrated circuits of complex board prototypes. It provides a user-friendly interface to communicate with several chips using the USB port. The program has been used for the first stages in the qualification process of electronic boards for the Advanced GAmma Tracking Array (AGATA).
Isomeric decay spectroscopy of theBi217isotope
The structure of the neutron-rich bismuth isotope 217Bi has been studied for the first time. The fragmentation of a primary 238U beam at the FRS-RISING setup at GSI was exploited to perform γ-decay spectroscopy, since μs isomeric states were expected in this nucleus. Gamma rays following the decay of a t1/2=3 μs isomer were observed, allowing one to establish the low-lying structure of 217Bi. The level energies and the reduced electric quadrupole transition probability B(E2) from the isomeric state are compared to large-scale shell-model calculations.
Spectroscopy of neutron-rich (168,170)Dy: Yrast band evolution close to the N(p)N(n) valence maximum
The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se-82 beam and an Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2(+) and 4(+) members of the previously measured ground-state rotational band of Dy-168 have been confirmed and the yrast band extended up to 10(+). A tentative candidate for the 4(+) -> 2(+) transition in Dy-170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface ca…
Development of the control card for the digitizers of the second generation electronics of AGATA
In this work, the features and development process of the novel control card for the digitizers of AGATA are presented. The board is part of the new hardware proposed for the electronic system of the experiment. In particular, the control card provides the sampling clock for the digitizers, contributes to the synchronization of the digital data and performs the slow control of its associated digitizer cards.
Lifetime Measurements of the Neutron-RichN=30IsotonesCa50andSc51: Orbital Dependence of Effective Charges in thefpShell
The lifetimes of the first excited states of the N=30 isotones Ca-50 and Sc-51 have been determined using the Recoil Distance Doppler Shift method in combination with the CLARA-PRISMA spectrometers. This is the first time such a method is applied to measure lifetimes of neutron-rich nuclei populated via a multinucleon transfer reaction. This extends the lifetime knowledge beyond the f(7/2) shell closure and allows us to derive the effective proton and neutron charges in the fp shell near the doubly magic nucleus Ca-48, using large-scale, shell-model calculations. These results indicate an orbital dependence of the core polarization along the fp shell.
New μs Isomers in the Neutron-rich 210Hg Nucleus
Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in Hg-210: the 8(+) isomer expected from the seniority scheme in the vg(9/2) shell and a second one at low spin and low excitation energy. The decay strength of the 8(+) isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3(-) state, although this is in contrast with theoretical expectations. (C) 2013 Elsevier B.V. All rights reserved.
Access to Gamma-ray Spectroscopy of Neutron-Rich sdfp Shell Nuclei
γ-rays in neutron-rich sdfp shell nuclei, produced in deep-inelastic processes during collisions of 37Cl and 40Ar ions on 208Pb and of 48Ca ions on 48Ca, have been studied using large Ge multidetector arrays. Candidates for new yrast states in heavy argon and sulfur isotopes have been identified.
Reaction dynamics and nuclear structure studies via deep inelastic collisions with heavy-ions: spin and parity assignment in49Ca
The population and gamma decay of neutron rich nuclei around 48Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions (DIC) on 64Ni, at an energy approximately twice the Coulomb barrier. The reaction properties of the main products are investigated, focusing on total cross sections and angular distributions both integrated in energy and associated to the population of specific excited states. Gamma spectroscopy studies are also performed, giving evidence, for the first time in transfer reactions with heavy ions, of a large spin alignment (~70%), perpendicular to the reaction plane. This makes possible the use of angular distributions…
High-spin structure of Xe134
A. Vogt et al. ; 12 págs.; 9 figs.; 1 tab.
In-beam γ -ray spectroscopy of the neutron-rich platinum isotope Pt200 toward the N=126 shell gap
The neutron-rich nucleus \nucleus{200}{Pt} is investigated via in-beam \gamma-ray spectroscopy in order to study the shape evolution in the neutron-rich platinum isotopes towards the N = 126 shell closure. The two-neutron transfer reaction \nucleus{198}{Pt}(\nucleus{82}{Se}, \nucleus{80}{Se})\nucleus{200}{Pt} is used to populate excited states of \nucleus{200}{Pt}. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects \gamma rays coincident with the \nucleus{80}{Se} recoils, the binary partner of \nucleus{200}{Pt}. The binary partner method is applied to extract the \gamma-ray transitions and build the level scheme of \nucleus{200}{Pt}. The …
Spin distribution measurement for 64Ni + 100Mo at near and above barrier energies
Spin distribution measurements were performed for the reaction 64 Ni + 100 Mo at three beam energies ranging from 230 to 260 MeV. Compound nucleus (CN) spin distributions were obtained channel selective for each evaporation residue populated by the de-excitation cascade. A comparison of the spin distribution at different beam energies indicates that its slope becomes steeper and steeper with increasing beam energy. This change in slope of the spin distribution is mainly due to the onset of fission competition with particle evaporation at higher beam energies.
Lifetime measurements in mirror nuclei31S and31P: A test for isospin mixing
Using the 20Ne + 12C fusion-evaporation reaction at E20Ne = 33 MeV and the multidetector array GASP in conjuction with the EUCLIDES charged particle detector, angular correlations of coincident pairs of γ transitions and lifetimes in mirror nuclei 31S and 31P have been measured at the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. A comparison of the determined B(E1) strengths of the analog mirror 7/2− → 5/2+ transitions indicates the presence of a violation of isospin symmetry.
Low-lying electric dipole gamma-continuum for the unstable Fe-62,64 nuclei : Strength evolution with neutron number
6 pags., 4 figs.
Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors
WOS: 000290082600015
High-spin states in the neutron-rich A∼100 region
Two experimental setups have been used to study excited states of neutron‐rich nuclei in the A∼100 region. Extended level schemes and lifetime measurements were obtained using deep‐inelastic and fusion‐fission reactions with the CLARA‐PRISMA spectrometer and the Ge‐array GASP respectively. Experimental information from GASP has been used to complement the CLARA‐PRISMA experiment. Time spectra have been used to measure the lifetimes of isomeric states. Preliminary results are presented for 89Rb.
Spectroscopic studies with the PRISMA-CLARA set-up
The large solid angle magnetic spectrometer for heavy ions PRISMA, installed at Laboratori Nazionali di Legnaro (LNL), was operated up to the end of March 2008 in conjunction with the highly efficient CLARA set-up. It allowed to carry out nuclear structure and reaction mechanism studies in several mass regions of the nuclide chart. Results obtained in the vicinity of the island of inversion and for the heavy iron and chromium isotopes are presented in this contribution. The status of the new focal plane detectors specifically designed for light ions and slow moving heavy ions is also reported.
Study of isomeric states in $^{198,200,202,206}$Pb and $^{206}$Hg populated in fragmentation reactions
International audience; Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populatedfollowing reactions of a relativistic 208Pb primary beam impinging on a9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg wereisotopically separated and implanted in a passive stopper positioned in thefocal plane of the GSI Fragment Separator. Delayed γ rays were detected withthe Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluatedand interpreted with shell-model calculations. The momentumdependentpopulation of isomeric states in the two-nucleon hole nuclei206Pb/206Hg was found to differ from the population of multi neutron-holeisomeric states in 198…
High-spin structure in the transitional nucleus Xe131 : Competitive neutron and proton alignment in the vicinity of the N=82 shell closure
The transitional nucleus 131Xe is investigated after multinucleon transfer (MNT) in the 136Xe+208Pb and 136Xe+238U reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and as an elusive reaction product in the fusion-evaporation reaction 124Sn(11B,p3n) 131Xe employing the HORUS γ-ray array coupled to a double-sided silicon strip detector (DSSSD) at the University of Cologne, Germany. The level scheme of 131Xe is extended to 5 MeV. A pronounced backbending is observed at ~ω ≈ 0.4 MeV along the negative-parity one-quasiparticle νh11/2(α = −1/2) band. The results are compared to t…
AGATA-Advanced GAmma Tracking Array
WOS: 000300864200005