0000000000017342
AUTHOR
Karol K. Kozlowski
showing 18 related works from this author
On Determinants of Integrable Operators with Shifts
2013
Integrable integral operator can be studied by means of a matrix Riemann--Hilbert problem. However, in the case of so-called integrable operators with shifts, the associated Riemann--Hilbert problem becomes operator valued and this complicates strongly the analysis. In this note, we show how to circumvent, in a very simple way, the use of such a setting while still being able to characterize the large-$x$ asymptotic behavior of the determinant associated with the operator.
Functions Characterizing the Ground State of the XXZ Spin-1/2 Chain in the Thermodynamic Limit
2013
We establish several properties of the solutions to the linear integral equations describing the infinite volume properties of the XXZ spin-1/2 chain in the disordered regime. In particular, we obtain lower and upper bounds for the dressed energy, dressed charge and density of Bethe roots. Furthermore, we establish that given a fixed external magnetic field (or a fixed magnetization) there exists a unique value of the boundary of the Fermi zone.
A form factor approach to the asymptotic behavior of correlation functions in critical models
2011
We propose a form factor approach for the computation of the large distance asymptotic behavior of correlation functions in quantum critical (integrable) models. In the large distance regime we reduce the summation over all excited states to one over the particle/hole excitations lying on the Fermi surface in the thermodynamic limit. We compute these sums, over the so-called critical form factors, exactly. Thus we obtain the leading large distance behavior of each oscillating harmonic of the correlation function asymptotic expansion, including the corresponding amplitudes. Our method is applicable to a wide variety of integrable models and yields precisely the results stemming from the Lutt…
On form-factor expansions for the XXZ chain in the massive regime
2014
We study the large-volume-$L$ limit of form factors of the longitudinal spin operators for the XXZ spin-$1/2$ chain in the massive regime. We find that the individual form factors decay as $L^{-n}$, $n$ being an even integer counting the number of physical excitations -- the holes -- that constitute the excited state. Our expression allows us to derive the form-factor expansion of two-point spin-spin correlation functions in the thermodynamic limit $L\rightarrow +\infty$. The staggered magnetisation appears naturally as the first term in this expansion. We show that all other contributions to the two-point correlation function are exponentially small in the large-distance regime.
Unitarity of the SoV Transform for the Toda Chain
2014
The quantum separation of variables method consists in mapping the original Hilbert space where a spectral problem is formulated onto one where the spectral problem takes a simpler "separated" form. In order to realise such a program, one should construct the map explicitly and then show that it is unitary. In the present paper, we develop a technique which allows one to prove the unitarity of this map in the case of the quantum Toda chain. Our proof solely builds on objects and relations naturally arising in the framework of the so-called quantum inverse scattering method. Hence, with minor modifications, it should be readily transposable to other quantum integrable models solvable by the …
Asymptotics of correlation functions of the Heisenberg-Ising chain in the easy-axis regime
2016
We analyze the long-time large-distance asymptotics of the longitudinal correlation functions of the Heisenberg-Ising chain in the easy-axis regime. We show that in this regime the leading asymptotics of the dynamical two-point functions is entirely determined by the two-spinon contribution to their form factor expansion. Its explicit form is obtained from a saddle-point analysis of the corresponding double integral. It describes the propagation of a wave front with velocity $v_{c_1}$ which is found to be the maximal possible group velocity. Like in wave propagation in dispersive media the wave front is preceded by a precursor running ahead with velocity $v_{c_2}$. As a special case we obta…
Form factor approach to dynamical correlation functions in critical models
2012
We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schr\"odinger model. We derive long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle/hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on the microscopic analysis of the model, without invoking, at any stage, some correspon…
On lacunary Toeplitz determinants
2014
By using Riemann--Hilbert problem based techniques, we obtain the asymptotic expansion of lacunary Toeplitz determinants $\det_N\big[ c_{\ell_a-m_b}[f] \big]$ generated by holomorhpic symbols, where $\ell_a=a$ (resp. $m_b=b$) except for a finite subset of indices $a=h_1,\dots, h_n$ (resp. $b=t_1,\dots, t_r$). In addition to the usual Szeg\"{o} asymptotics, our answer involves a determinant of size $n+r$.
Microscopic approach to a class of 1D quantum critical models
2015
Starting from the finite volume form factors of local operators, we show how and under which hypothesis the $c=1$ free boson conformal field theory in two-dimensions emerges as an effective theory governing the large-distance regime of multi-point correlation functions in a large class of one dimensional massless quantum Hamiltonians. In our approach, in the large-distance critical regime, the local operators of the initial model are represented by well suited vertex operators associated to the free boson model. This provides an effective field theoretic description of the large distance behaviour of correlation functions in 1D quantum critical models. We develop this description starting f…
Surface free energy of the open XXZ spin-1/2 chain
2012
We study the boundary free energy of the XXZ spin-$\tf{1}{2}$ chain subject to diagonal boundary fields. We first show that the representation for its finite Trotter number approximant obtained by Bortz, Frahm and G\"{o}hmann is related to the partition function of the six-vertex model with reflecting ends. Building on the Tsuchiya determinant representation for the latter quantity we are able to take the infinite Trotter number limit. This yields a representation for the surface free energy which involves the solution of the non-linear integral equation that governs the thermodynamics of the XXZ spin-1/2 chain subject to periodic boundary conditions. We show that this integral representati…
Large-x Analysis of an Operator-Valued Riemann–Hilbert Problem
2015
International audience; The purpose of this paper is to push forward the theory of operator-valued Riemann-Hilbert problems and demonstrate their effectiveness in respect to the implementation of a non-linear steepest descent method a la Deift-Zhou. In this paper, we demonstrate that the operator-valued Riemann-Hilbert problem arising in the characterization of so-called c-shifted integrable integral operators allows one to extract the large-x asymptotics of the Fredholm determinant associated with such operators.
Low-temperature spectrum of correlation lengths of the XXZ chain in the antiferromagnetic massive regime
2015
We consider the spectrum of correlation lengths of the spin-$\frac{1}{2}$ XXZ chain in the antiferromagnetic massive regime. These are given as ratios of eigenvalues of the quantum transfer matrix of the model. The eigenvalues are determined by integrals over certain auxiliary functions and by their zeros. The auxiliary functions satisfy nonlinear integral equations. We analyse these nonlinear integral equations in the low-temperature limit. In this limit we can determine the auxiliary functions and the expressions for the eigenvalues as functions of a finite number of parameters which satisfy finite sets of algebraic equations, the so-called higher-level Bethe Ansatz equations. The behavio…
Thermal form factors of the XXZ chain and the large-distance asymptotics of its temperature dependent correlation functions
2013
We derive expressions for the form factors of the quantum transfer matrix of the spin-1/2 XXZ chain which are suitable for taking the infinite Trotter number limit. These form factors determine the finitely many amplitudes in the leading asymptotics of the finite-temperature correlation functions of the model. We consider form-factor expansions of the longitudinal and transversal two-point functions. Remarkably, the formulae for the amplitudes are in both cases of the same form. We also explain how to adapt our formulae to the description of ground state correlation functions of the finite chain. The usefulness of our novel formulae is demonstrated by working out explicit results in the hig…
Low-temperature large-distance asymptotics of the transversal two-point functions of the XXZ chain
2014
We derive the low-temperature large-distance asymptotics of the transversal two-point functions of the XXZ chain by summing up the asymptotically dominant terms of their expansion into form factors of the quantum transfer matrix. Our asymptotic formulae are numerically efficient and match well with known results for vanishing magnetic field and for short distances and magnetic fields below the saturation field.
Combinatorics of generalized Bethe equations
2012
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over \({\mathbb{Z}^M}\), and on the other hand, they count integer points in certain M-dimensional polytopes.
Large-distance asymptotic behaviour of multi-point correlation functions in massless quantum models
2014
We provide a microscopic model setting that allows us to readily access to the large-distance asymptotic behaviour of multi-point correlation functions in massless, one-dimensional, quantum models. The method of analysis we propose is based on the form factor expansion of the correlation functions and does not build on any field theory reasonings. It constitutes an extension of the restricted sum techniques leading to the large-distance asymptotic behaviour of two-point correlation functions obtained previously.
Riemann-Hilbert approach to the time-dependent generalized sine kernel
2011
We derive the leading asymptotic behavior and build a new series representation for the Fredholm determinant of integrable integral operators appearing in the representation of the time and distance dependent correlation functions of integrable models described by a six-vertex R-matrix. This series representation opens a systematic way for the computation of the long-time, long-distance asymptotic expansion for the correlation functions of the aforementioned integrable models away from their free fermion point. Our method builds on a Riemann–Hilbert based analysis.
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
2010
We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system-size. Moreover, the corresponding amplitudes can be obtained as a product of a "smooth" and a "discrete" part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a …