6533b7d6fe1ef96bd1265e0f

RESEARCH PRODUCT

A form factor approach to the asymptotic behavior of correlation functions in critical models

J. M. MailletVéronique TerrasNikolai KitanineKarol K. KozlowskiNikita Andreevich Slavnov

subject

Statistics and ProbabilityHigh Energy Physics - TheoryCritical phenomena[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesBethe ansatzCorrelation functionLuttinger liquid0103 physical sciences[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Statistical physics010306 general physicsCondensed Matter - Statistical MechanicsMathematical PhysicsPhysicsStatistical Mechanics (cond-mat.stat-mech)Nonlinear Sciences - Exactly Solvable and Integrable Systems010308 nuclear & particles physicsConformal field theory[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Form factor (quantum field theory)Statistical and Nonlinear PhysicsMathematical Physics (math-ph)16. Peace & justiceHigh Energy Physics - Theory (hep-th)Thermodynamic limitExactly Solvable and Integrable Systems (nlin.SI)Statistics Probability and UncertaintyAsymptotic expansion

description

We propose a form factor approach for the computation of the large distance asymptotic behavior of correlation functions in quantum critical (integrable) models. In the large distance regime we reduce the summation over all excited states to one over the particle/hole excitations lying on the Fermi surface in the thermodynamic limit. We compute these sums, over the so-called critical form factors, exactly. Thus we obtain the leading large distance behavior of each oscillating harmonic of the correlation function asymptotic expansion, including the corresponding amplitudes. Our method is applicable to a wide variety of integrable models and yields precisely the results stemming from the Luttinger liquid approach, the conformal field theory predictions and our previous analysis of the correlation functions from their multiple integral representations. We argue that our scheme applies to a general class of non-integrable quantum critical models as well.

10.1088/1742-5468/2011/12/p12010https://hal.archives-ouvertes.fr/hal-02324564