0000000000278162
AUTHOR
J. M. Maillet
showing 6 related works from this author
A form factor approach to the asymptotic behavior of correlation functions in critical models
2011
We propose a form factor approach for the computation of the large distance asymptotic behavior of correlation functions in quantum critical (integrable) models. In the large distance regime we reduce the summation over all excited states to one over the particle/hole excitations lying on the Fermi surface in the thermodynamic limit. We compute these sums, over the so-called critical form factors, exactly. Thus we obtain the leading large distance behavior of each oscillating harmonic of the correlation function asymptotic expansion, including the corresponding amplitudes. Our method is applicable to a wide variety of integrable models and yields precisely the results stemming from the Lutt…
Form factor approach to dynamical correlation functions in critical models
2012
We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schr\"odinger model. We derive long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle/hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on the microscopic analysis of the model, without invoking, at any stage, some correspon…
Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables
2014
28 pages; International audience; We solve the longstanding problem to define a functional characterization of the spectrum of the transfer matrix associated to the most general spin-1/2 representations of the 6-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to…
Microscopic approach to a class of 1D quantum critical models
2015
Starting from the finite volume form factors of local operators, we show how and under which hypothesis the $c=1$ free boson conformal field theory in two-dimensions emerges as an effective theory governing the large-distance regime of multi-point correlation functions in a large class of one dimensional massless quantum Hamiltonians. In our approach, in the large-distance critical regime, the local operators of the initial model are represented by well suited vertex operators associated to the free boson model. This provides an effective field theoretic description of the large distance behaviour of correlation functions in 1D quantum critical models. We develop this description starting f…
Large-distance asymptotic behaviour of multi-point correlation functions in massless quantum models
2014
We provide a microscopic model setting that allows us to readily access to the large-distance asymptotic behaviour of multi-point correlation functions in massless, one-dimensional, quantum models. The method of analysis we propose is based on the form factor expansion of the correlation functions and does not build on any field theory reasonings. It constitutes an extension of the restricted sum techniques leading to the large-distance asymptotic behaviour of two-point correlation functions obtained previously.
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
2010
We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system-size. Moreover, the corresponding amplitudes can be obtained as a product of a "smooth" and a "discrete" part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a …