Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared
Nonlinear frequency conversion spanning from the ultraviolet to the mid-infrared (beyond 2.4 μm) is experimentally demonstrated in multicladding silicon nitride (𝑆𝑖𝑋𝑁𝑌) waveguides. By adjusting the waveguide cross-section the chromatic dispersion is flattened, which enhances both the efficiency and the bandwidth of the nonlinear conversion. How accurately the dispersion is tailored is assessed through chromatic dispersion measurements and an experiment/simulation comparison of the dispersive waves' wavelength locations. Undesirable fluctuations of both the refractive index and the dimensions of the waveguide during the fabrication process result in a dispersion unpredictability of at l…