0000000000017677
AUTHOR
Veronica Davalos
Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis.
Summary Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here, we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of cerebellar degeneration-related 1 antisense (CDR1as), a regulator of miR-7, as a hallmark of melanoma progression. CDR1as depletion results from epigenetic silencing of LINC00632, its originating long non-coding RNA (lncRNA) and promotes invasion in vitro and metastasis in vivo through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as le…
Abstract PR04: Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis
Abstract Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover new biology and/or yield promising therapeutic insights. Here we investigated the role of circular RNAs (circRNAs), a class of noncoding RNAs lacking characterized functions, in metastasis, using melanoma as a model aggressive tumor. We analyzed RNA-seq of melanocytes and melanoma short-term cultures to characterize the landscape of circRNA in melanocytic cells. We observed silencing of Cerebellar Degeneration Related 1 (CDR1as), a neuronal-enriched circRNA and known regulator of the microRNA miR-7, in melanoma cell lines and short-term cultures compared to cul…
Gene Amplification-Associated Overexpression of the Selenoprotein tRNA Enzyme TRIT1 Confers Sensitivity to Arsenic Trioxide in Small-Cell Lung Cancer
Simple Summary Small-cell lung cancer accounts for approximately 13% of all new lung cancer diagnoses, but in contrast to non-small-cell lung cancer, the implementation of targeted treatments in small-cell lung cancer has been limited, with little improvement in the clinical outcome in the last several decades. Exploring new pathways for targeted therapy, we have observed that extra-copies of the tRNA modifier TRIT1, involved in the translation of selenoproteins, confers sensitivity to arsenic trioxide in small-cell lung cancer. This finding could open a new therapeutic niche for a tumor type with such a dismal clinical course. The alteration of RNA modification patterns is emerging as a co…