0000000000017695
AUTHOR
Abbas J. Ali
Particle Identification with DIRCs at PANDA
The DIRC technology (Detection of Internally Reflected Cherenkov light) offers an excellent possibility to minimize the form factor of Cherenkov detectors in hermetic high energy detectors. The PANDA experiment at FAIR in Germany will combine a barrel-shaped DIRC with a disc-shaped DIRC to cover an angular range of 5 to 140 degrees. Particle identification for pions and kaons with a separation power of 3 standard deviations or more will be provided for momenta between 0.5 GeV/c and 3.5 GeV/c in the barrel region and up to 4 GeV/c in the forward region. Even though the concept is simple, the design and construction of a DIRC is challenging. High precision optics and mechanics are required to…
The Endcap Disc DIRC detector of PANDA
Abstract At the international FAIR laboratory, an upcoming significant enlargement of the GSI installations near Darmstadt, Germany, the PANDA antiproton experiment will investigate fundamental questions of hadron physics in the charm quark energy range. Antiprotons in the 1.5 to15 GeV/c momentum range will interact with gas jet or pellet fixed targets. The Endcap Disc DIRC (Detection of Internally Reflected Cherenkov light) covers the forward endcap solid angle of the PANDA target spectrometer to positively identify charged kaons. Monte-Carlo simulations indicate that from 1 up to 4 GeV/c one can achieve kaon–pion separation with a separation power of at least 3 standard deviations. For th…
Time imaging reconstruction for the PANDA Barrel DIRC
The innovative Barrel DIRC (Detection of Internally Reflected Cherenkov light) counter will provide hadronic particle identification (PID) in the central region of the PANDA experiment at the new Facility for Antiproton and Ion Research (FAIR), Darmstadt, Germany. This detector is designed to separate charged pions and kaons with at least 3 standard deviations for momenta up to 3.5 GeV/c, covering the polar angle range of 22$^{\circ}$-140$^{\circ}$. An array of microchannel plate photomultiplier tubes is used to detect the location and arrival time of the Cherenkov photons with a position resolution of 2 mm and time precision of about 100 ps. The time imaging reconstruction has been develop…