0000000000017921
AUTHOR
Margarita Norambuena
Voltage Source Multilevel Inverters With Reduced Device Count: Topological Review and Novel Comparative Factors
Multilevel inverters (MLIs) have gained increasing interest for advanced energy-conversion systems due to their features of high-quality produced waveforms, modularity, transformerless operation, voltage, and current scalability, and fault-tolerant operation. However, these merits usually come with the cost of a high number of components. Over the past few years, proposing new MLIs with a lower component count has been one of the most active topics in power electronics. The first aim of this article is to update and summarize the recently developed multilevel topologies with a reduced component count, based on their advantages, disadvantages, construction, and specific applications. Within …
Novel Three-Phase Multi-Level Inverter with Reduced Components
A new multilevel converter topology is proposed in this paper. Low component count and compact design are the main features of the proposed topology. Furthermore, the proposed converter is a capacitor-, inductor-, and diode-free configuration, allowing reducing the converter footprint, increasing the lifetime and simplifying the control strategy. Further, a comparative study is carried out to highlight the merits of the proposed circuit as compared to existing multilevel topologies. Finally, simulation results for the three-level version using different modulation strategies are presented.
Novel Three-Phase Multilevel Inverter With Reduced Components for Low- and High-Voltage Applications
In this article, a novel multilevel topology for three-phase applications, having three-level and hybrid N -level modular configurations, enabling low-, medium-, and high-voltage operations, is presented. The proposed topology has several attractive features, namely reduced component count, being capacitor-, inductor-, and diode-free, lowering cost, control-complexity, and size, and can operate in a wide range of voltages and powers. Selected simulation and experimental results are presented to verify the performance of the proposed topology. Further, the overall efficiency of the topology and loss distribution in switches are studied. Finally, the key features of the proposed topology in t…