0000000000017983

AUTHOR

Michele Ciofalo

showing 208 related works from this author

Optimization of net power density in Reverse Electrodialysis

2019

Abstract Reverse Electrodialysis (RED) extracts electrical energy from the salinity difference between two solutions using selective ion exchange membranes. In RED, conditions yielding a large net power density (NPD) are generally desired, due to the still large cost of the membranes. NPD depends on a large number of physical and geometric parameters. Some of these, for example the inlet concentrations of concentrate and diluate, can be regarded as “scenario” variables, imposed by external constraints (e.g., availability) or chosen by different criteria than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, c…

OptimizationSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMathematical optimization020209 energy02 engineering and technologyIndustrial and Manufacturing Engineering020401 chemical engineeringStack (abstract data type)Reversed electrodialysisReverse electrodialysi0202 electrical engineering electronic engineering information engineering0204 chemical engineeringElectrical and Electronic EngineeringSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringPower densityMathematicsGradient ascentOptimization algorithmMechanical EngineeringElectric potential energySalinity gradientBuilding and ConstructionMaximizationNet (mathematics)PollutionNet power densityGeneral EnergyIon-exchange membranesEnergy
researchProduct

Transition to turbulence in toroidal pipes

2011

AbstractIncompressible flow in toroidal pipes of circular cross-section was investigated by three-dimensional, time-dependent numerical simulations using a finite volume method. The computational domain included a whole torus and was discretized by up to ${\ensuremath{\sim} }11. 4\ensuremath{\times} 1{0}^{6} $ nodes. Two curvatures $\delta $ (radius of the cross-section/radius of the torus), namely 0.3 and 0.1, were examined; a streamwise forcing term was imposed, and its magnitude was made to vary so that the bulk Reynolds number ranged between ${\ensuremath{\sim} }3500$ and ${\ensuremath{\sim} }14\hspace{0.167em} 700$. The results were processed by different techniques in order to confirm…

PhysicsHopf bifurcationTurbulenceMechanical EngineeringReynolds numberTorusMechanicstransition to turbulence periodic flow quasi-periodic flow computational fluid dynamics curved pipe toroidal pipeCondensed Matter PhysicsSecondary flowVortexVortex ringsymbols.namesakeMechanics of MaterialsIncompressible flowsymbolsSettore ING-IND/19 - Impianti NucleariJournal of Fluid Mechanics
researchProduct

Bartlett formalism generating functions and Z-transforms in fluctuation and noise theory

1983

Abstract “La theorie des fonctions generatrices s'adapte elle meme et avec la plus grande generalite aux questions des probabilite les plus difficiles.” (Laplace, 1812) “An important part of probability theory consists of the derivation of the probability distribution of the sum of n random variables, each of which obeys a given probability law, and the development of asymptotic forms of these distributions valid for increasing n. Probability generating functions owe their dominant position to the simplification they permit to both problems. Their employment to obtain the successive moments of a probability distribution and to solve the difference equations of probability theory is ancillar…

Generating FunctionPopulation DynamicBartlett formalismMoment-generating functionNoise TheoryConvolution of probability distributionsAlgebra of random variablesStochastic ProceNuclear Energy and EngineeringProbability theoryJoint probability distributionCalculusApplied mathematicsProbability distributionRandom variableSettore ING-IND/19 - Impianti NucleariLaw of the unconscious statisticianMathematicsAnnals of Nuclear Energy
researchProduct

Performance Comparison of Alternative Hollow-Fiber Modules for Hemodialysis by Means of a CFD-Based Model

2022

Commercial hemodialyzers are hollow-fiber cylindrical modules with dimensions and inlet–outlet configurations dictated mostly by practice. However, alternative configurations are possible, and one may ask how they would behave in terms of performance. In principle, it would be possible to depart from the standard counter-flow design, while still keeping high clearance values, thanks to the increase in the shell-side Sherwood number (Sh) due to the cross-flow. To elucidate these aspects, a previously developed computational model was used in which blood and dialysate are treated as flowing through two interpenetrating porous media. Measured Darcy permeabilities and mass transfer coefficients…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciProcess Chemistry and TechnologyPorous mediaHollow-fiber membraneUltrafiltrationhemodialysis; hollow-fiber membrane; solute clearance; computational fluid dynamics; porous media; Darcy permeability; ultrafiltration; mass transferFiltration and SeparationComputational fluid dynamicsHemodialysisChemical Engineering (miscellaneous)Mass transferDarcy permeabilitySettore ING-IND/19 - Impianti NucleariSolute clearanceMembranes
researchProduct

MHD Free Convection in Helium-Cooled Lithium-Lead Blanket Modules for the Demonstration Fusion Reactor

2003

DEMO ReactorNatural ConvectionNuclear FusionHelium Cooled Lithium Lead BlanketMagnetohydrodynamicCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Modellazione semplificata dello scambio termico per convezione naturale da una parete verticale calda con l'eventuale presenza di un film liquido. Qu…

2008

researchProduct

Turbulent Fluid Flow in Closed- and Free-Surface Unbaffled Tanks Stirred by Radial Impellers

1996

Free surface flowStirred tankSettore ING-IND/25 - Impianti ChimiciTurbulence modelCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

SIMULAZIONI CFD DEL CAMPO DI MOTO A BASSO NUMERO DI REYNOLDS IN BIOREATTORI AGITATI CON E SENZA SETTI FRANGIVORTICE

2016

I recipienti meccanicamente agitati sono apparecchiature frequenti dell’industria chimica di processo. Questi sono tipicamente dotati di setti frangivortice (recipienti baffled) atti a rompere il moto prettamente tangenziale tipico dei recipienti sprovvisti di setti (recipienti unbaffled) e convertirlo in moto assiale e radiale. La presenza dei setti evita inoltre nella zona centrale del sistema la formazione del vortice d’aria che può talvolta essere indesiderato o in taluni casi creare instabilità una volta arrivato alla girante. I recipienti unbaffled sono considerati quindi dei miscelatori meno efficienti rispetto a quelli provvisti di setti. Tali sistemi sono pertanto ad oggi impiegati…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMixing CFD Unbaffled Stirred tanksSettore ING-IND/25 - Impianti Chimici
researchProduct

Investigation of Flow and Heat Transfer in Corrugated Passages – II. Numerical Simulations

1996

Rotary regeneratorHeat transferPlate heat exchangerTurbulence modelCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Experimental investigation of two-side heat transfer in spacer-filled channels

2020

Abstract In Membrane Distillation (MD), spacers support the membranes and promote mixing, thus reducing temperature polarization. Their efficient design requires a knowledge of the distribution of the local heat transfer coefficient h and of its dependence on Reynolds number, spacer geometry and flow-spacer relative orientation. In previous work, we applied Thermochromic Liquid Crystals (TLC) and digital image processing to the measurement of h distributions for different spacer configurations; data were used to validate CFD simulations and select turbulence models. For constructive reasons, the test section allowed only one-side heat transfer, while in most MD configurations (e.g. spiral-w…

HistorySettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceMembrane Distillation Thermochromic liquid crystals (TLC) Spacer-filled channelsHeat transferComposite materialSettore ING-IND/19 - Impianti NucleariComputer Science ApplicationsEducation
researchProduct

La turbolenza e i suoi modelli

2004

researchProduct

A Comparison of Direct Numerical Simulation and Turbulence Models for Liquid Metal Free Convection in Volumetrically Heated Enclosures

1999

Natural ConvectionDirect Numerical SimulationRectangular EnclosureCFDTurbulence ModelLiquid MetalSettore ING-IND/19 - Impianti NucleariInternal Heating
researchProduct

The REAPower Project

2019

Abstract Reverse electrodialysis technology has grown significantly in the last decade, gaining a fast increase in its technology readiness level and presenting some interesting examples of pilot systems operating under very different real environments. Among these, one was able to operate in a saltwork in Marsala (Sicily, Italy) with real concentrated brine and real saline waters (i.e., either seawater or brackish water), producing electric power in the order of 1 kW. This pilot plant was one of the main achievements of the European REAPower research project. This chapter presents an overview of the main research efforts and results achieved in the framework of this project starting from t…

Pilot plantBrackish waterbusiness.industryProject commissioningReversed electrodialysisEnvironmental scienceSeawaterElectric powerTechnology readiness levelProcess engineeringbusinessPlant level
researchProduct

Large Eddy Simulation of Unbaffled Stirred Tanks

2004

researchProduct

CFD prediction of concentration polarization phenomena in spacer-filled channels for Reverse Electrodialysis

2014

Abstract Salinity Gradient Power generation through Reverse Electrodialysis (SGP-RE) is a promising technology to convert the chemical potential difference of a salinity gradient into electric energy. In SGP-RE systems, as in most membrane processes, concentration polarization phenomena may affect the theoretical driving force and thus the performance of the process. Operating conditions, including the feed solution flow rate and concentration and the channels׳ geometrical configuration, may greatly influence both the polarization effect and the pumping energy consumption. The present work uses CFD to investigate the dependence of concentration polarization and pressure drop on flow rate, f…

Pressure dropSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciChemistryAnalytical chemistryFiltration and Separation02 engineering and technologyElectrodialysis021001 nanoscience & nanotechnology7. Clean energyBiochemistry6. Clean waterVolumetric flow rate020401 chemical engineeringChemical physicsReversed electrodialysisOsmotic powerGeneral Materials Science0204 chemical engineeringPhysical and Theoretical Chemistry0210 nano-technologyPolarization (electrochemistry)Current densitySettore ING-IND/19 - Impianti NucleariConcentration polarizationCFD Reverse Electrodialysis concentration polarization spacer-filled channel mixing promoter
researchProduct

CFD simulation of channels for direct and reverse electrodialysis

2012

Flows within very thin channels, typically filled with spacers, can be often encountered in many processes such as electrodialysis (ED) and reverse electrodialysis (RED). Although the ED and the RED processes have been studied for a long time, the optimization of the fluid dynamics within the channels is still an open problem. In the present work, realized within the EU-FP7 funded REAPower project, computational fluid dynamics simulations were carried out in order to predict the fluid flow field inside a single ED/RED channel. Some different configurations were tested which includes: an empty channel, a channel provided with a spacer, and a channel filled with a purposely manufactured fiber…

EngineeringEngineering drawingRenewable energySettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer020209 energySettore ING-IND/25 - Impianti ChimiciOcean EngineeringTopology (electrical circuits)02 engineering and technologyComputational fluid dynamicsElectrodialysi020401 chemical engineeringReversed electrodialysisReverse electrodialysi0202 electrical engineering electronic engineering information engineeringFluid dynamicsPerpendicularSalinity gradient power0204 chemical engineeringWater Science and Technologybusiness.industryWaterMechanicsElectrodialysisPollutionSettore ING-IND/06 - FluidodinamicaPorous mediumbusinessCFDCommunication channel
researchProduct

Improved Liquid Crystal Thermography by Using True-Colour Image Processing Technology

2002

No abstract available

Thermochromic Liquid CrystalDigital Image ProcessingThermographyHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD simulation of Electrodialysis channels equipped with profiled membranes

Electrodialysis (ED) is a membrane-based electrochemical process that remove ions from a solution. The main use of ED is for the production of drinking water by brackish water desalination, but there are several other applications. ED is characterized by the coexistence and the interaction of different physical phenomena that affect the stack performance. Among them, fluid dynamics and mass transport are crucial: concentration polarization affects the limiting current density and the non-Ohmic voltage drop due to the chemical potential difference between the two solutions; pressure drop affects the pumping power consumption. Moreover, the total energy consumption depends also on the Ohmic v…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/19 - Impianti NucleariElectrodialysis Profiled membrane CFD Concentration polarization Pressure drop
researchProduct

CFD MODELLING OF PARTICLE SUSPENSION IN STIRRED TANKS

2011

Mixing of solid particles into liquids in mechanically agitated vessels is a topic of primary importance for several industrial applications. A great deal of research efforts has been devoted so far to the assessment of the minimum impeller speed (Njs) able to guarantee that all particles are suspended. Conversely, only little attention has been paid to the evaluation of the amount of solid particles that are suspended at impeller speeds N lower than Njs, despite the fact that in a number of industrial applications agitation speeds smaller than Njs are actually adopted [1,2]. The present work deals with dense solid-liquid partial suspensions in baffled stirred tanks and particularly focuses…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciStirred tankMulti Fluid ModelSettore ING-IND/25 - Impianti ChimiciMultiphase FlowSolid liquid suspensionComputational Fluid Dynamic
researchProduct

CFD modelling of profiled membranes channels for reverse electrodialysis

2014

Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations were perform…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse electrodialysiComputational fluid dynamicsProfiled membraneConcentration polarizationSettore ING-IND/19 - Impianti Nucleari
researchProduct

Heavy Gas Dispersion Modelling Over a Topographically Complex Mesoscale: A CFD Based Approach

2005

Abstract: Potentially dangerous events involving heavy gas dispersion and their severe consequences have been largely publicized by the media. Simplified models have been widely applied to describe the effects of these accidents. However, most simplified models deal with flat terrain scenarios and are based on quite crude simplifications of the complex phenomenology involved. In this paper the possibility of simulating the dispersion of heavy gas clouds over a large topographically complex area (tens of km) by a general purpose computational fluid dynamics (CFD) code is investigated. The aim is that of setting up a tool able to produce a realistic description of such dispersion processes, w…

Dense cloud dispersionSettore ING-IND/25 - Impianti ChimiciAtmospheric boundary layerCFDComplex terrainHeavy gas
researchProduct

Il monitoraggio della radioattività ambientale in Italia: aspetti scientifici, giuridici e normativi. Quaderno No. 1/06, Dipartimento di Ingegneria N…

2006

researchProduct

Investigation of Flow and Heat Transfer in Corrugated-Undulated Plate Heat Exchangers

2000

An experimental and numerical investigation of heat transfer and fluid flow was conducted for corrugated-undulated plate heat exchanger configurations under transitional and weakly turbulent conditions. For a given geometry of the corrugated plates the geometrical characteristics of the undulated plates, the angle formed by the latter with the main flow direction, and the Reynolds number were made to vary. Distributions of the local heat transfer coefficient were obtained by using liquid-crystal thermography, and surface-averaged values were computed; friction coefficients were measured by wall pressure tappings. Overall heat transfer and pressure drop correlations were derived. Three-dimen…

Fluid Flow and Transfer ProcessesDynamic scraped surface heat exchangerMaterials scienceHeat transfer enhancementPlate heat exchangerThermodynamicsTurbulence modelHeat transfer coefficientMechanicsCondensed Matter PhysicsHeat TransferChurchill–Bernstein equationNusselt numberPhysics::Fluid DynamicsFluid flowbody-fitted gridHeat transferMicro heat exchangerPlate heat exchangerCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Determination of limiting current density and current efficiency in electrodialysis units

2018

Abstract A crucial parameter for the design and operation of electrodialysis (ED) units is the limiting current density (LCD). This is often identified with the diffusion-limited current density, which corresponds to the complete solute depletion in the layer adjacent to the membrane. Current-voltage curves obtained from measurements with electrodes in contact with the solution (i.e. without membranes) are consistent with this interpretation and exhibit a horizontal plateau identifying LCD. However, real ED systems show more complex behaviours, with a reduced-slope tract instead of a plateau and a third region in which the current increases more markedly (overlimiting current). The phenomen…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technologyPlateau (mathematics)Electrodialysi020401 chemical engineeringGeneral Materials ScienceChemical Engineering (all)0204 chemical engineeringDiffusion (business)Concentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationIon exchange membraneWater Science and TechnologyMechanical EngineeringChemistry (all)Limiting currentGeneral ChemistryMechanicsElectrodialysis021001 nanoscience & nanotechnologyLimiting current densityCurrent efficiencyMaterials Science (all)Current (fluid)0210 nano-technologyCurrent densityDesalination
researchProduct

The REAPower Project: Power Production From Saline Waters and Concentrated Brines

2019

Aim of this chapter is that of describing in detail the REAPower project from the very beginning up to the testing of the pilot plant built at the end of the project.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse electrodialysipower densitySettore ING-IND/19 - Impianti Nuclearibrine
researchProduct

Mixed magnetohydrodynamic convection in poloidal Helium-Cooled Lithium Lead blanket modules of a fusion reactor

2004

researchProduct

Reverse electrodialysis heat engine for sustainable power production

2017

Abstract Reverse Electrodialysis Heat Engine (REDHE) is a promising technology to convert waste heat at temperatures lower than 100 °C into electric power. In the present work an overview of the possible regeneration methods is presented and the technological challenges for the development of the RED Heat Engine (REDHE) are identified. The potential of this power production cycle was investigated through a simplified mathematical model. In the first part of the work, several salts were singularly modelled as possible solutes in aqueous solutions feeding the RED unit and the corresponding optimal conditions were recognized via an optimization study. In the second part, three different RED He…

Closed loopSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciThermal efficiencyWork (thermodynamics)Combined cycle020209 energy02 engineering and technologyManagement Monitoring Policy and Law7. Clean energyModellingThermolytic saltlaw.inventionlawWaste heatReversed electrodialysisReverse electrodialysi0202 electrical engineering electronic engineering information engineeringProcess engineeringCivil and Structural EngineeringHeat engineWaste managementbusiness.industryChemistryMechanical EngineeringBuilding and ConstructionClosed loop; Heat engine; Modelling; Power production cycle; Reverse electrodialysis; Thermolytic salts; Civil and Structural Engineering; Building and Construction; Energy (all); Mechanical Engineering; Management Monitoring Policy and LawPower production cycle021001 nanoscience & nanotechnology6. Clean waterPower (physics)Energy (all)General EnergyElectric power0210 nano-technologybusinessHeat engineApplied Energy
researchProduct

Fluid-structure interaction and flow redistribution in membrane-bounded channels

2019

The hydrodynamics of electrodialysis and reverse electrodialysis is commonly studied by neglecting membrane deformation caused by transmembrane pressure (TMP). However, large frictional pressure drops and differences in fluid velocity or physical properties in adjacent channels may lead to significant TMP values. In previous works, we conducted one-way coupled structural-CFD simulations at the scale of one periodic unit of a profiled membrane/channel assembly and computed its deformation and frictional characteristics as functions of TMP. In this work, a novel fluid&ndash

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciControl and OptimizationMaterials scienceFluid structure interactionEnergy Engineering and Power Technologycomputational fluid dynamics02 engineering and technologyComputational fluid dynamicsComputational fluid dynamicslcsh:TechnologyNumerical modelElectromembrane process020401 chemical engineeringComputational fluid dynamicHydraulic permeabilityReversed electrodialysisFluid–structure interactionMembrane deformationSDG 7 - Affordable and Clean Energy0204 chemical engineeringElectrical and Electronic EngineeringElectromembrane proceEngineering (miscellaneous)Profiled membraneSettore ING-IND/19 - Impianti NucleariIon exchange membraneDarcy's lawSuperficial velocitylcsh:TRenewable Energy Sustainability and the Environmentbusiness.industryFlow maldistributionMechanicsElectrodialysisDarcy flow021001 nanoscience & nanotechnologyelectromembrane processFlow velocity0210 nano-technologyPorous mediumbusinessSettore ICAR/08 - Scienza Delle CostruzioniEnergy (miscellaneous)
researchProduct

Convezione magnetoidrodinamica in metalli liquidi in configurazioni rilevanti per la fusione nucleare - 5. Trasporto del trizio in moduli poloidali d…

2004

researchProduct

Numerical simulation of electroconvection phenomena in electrodialysis

In water desalination by electrodialysis, the current density i cannot exceed specific constraints, notably the diffusion limit. Working at higher i (overlimiting current regime) would make higher desalination rates possible. The main phenomenon allowing overlimiting current densities is the electrokinetic instability that arises when a sufficiently intense electric potential gradient is imposed, and leads to electroconvective mixing in the near-wall layer. In this study, these phenomena were investigated by CFD. The governing equations were the Nernst-Planck transport equations for anions and cations, the Poisson equation for the electrical potential and the Navier-Stokes and continuity eq…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicielectroconvectionelectrodialysioverlimitingelectrokinetic instabilitySettore ING-IND/19 - Impianti Nucleari
researchProduct

Natural Convection Heat Transfer in a Partially- or Completely-Partitioned Vertical Rectangular Enclosure

1991

Laminar FlowNatural ConvectionEnclosureHeat TransferCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Influence of a Magnetic Field on Liquid Metal Free Convection in a Differentially Heated Cubic Enclosure

2002

Natural ConvectionEnclosureMagnetohydrodynamicCFDLiquid MetalSettore ING-IND/19 - Impianti Nucleari
researchProduct

Induction Heating of Planar Aluminum Targets for Spray Cooling Research

2005

researchProduct

Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine

2005

The turbulent flow fieldgeneratedin an unbaffledstirredtank by a Rushton turbine was computedby large-eddy simulation (LES). The Smagorinsky model was used to model the unresolved, or sub-grid, scales. A general purpose CFD code was appropriately modified in order to allow the computation of the sub-gridviscosity andto perform statistics on the computedresults. The numerical predictions were comparedwith the literature results for comparable configurations andwith experimental data obtainedusing particle image velocimetry. A very goodagreement was foundas regards both time-averagedresolv edfield s andturb ulence quantities. 2004 Elsevier Ltd. All rights reserved.

Engineeringunbaffled stiffed vesselField (physics)business.industryTurbulenceApplied MathematicsGeneral Chemical EngineeringComputationturbulenceGeneral ChemistryMechanicsComputational fluid dynamicsIndustrial and Manufacturing EngineeringRushton turbinePhysics::Fluid DynamicsViscositylarge-eddy simulationParticle image velocimetrybusinessCFDSimulationLarge eddy simulation
researchProduct

Studio di fattibilità sull’applicazione della tecnologia delle radiazioni ionizzanti al trattamento delle acque reflue in Sicilia. Quaderno N. 3/2007…

2007

researchProduct

Turbulence structure and budgets in curved pipes

2013

Abstract Turbulent flow in curved pipes was investigated by Direct Numerical Simulation. Three curvatures δ (pipe radius a /curvature radius c ) were examined: δ  = 0 (straight pipe), simulated for validation and comparison purposes; δ  = 0.1; and δ  = 0.3. The friction velocity Reynolds number (based on the pipe radius a ) was 500 in all cases, yielding bulk Reynolds numbers of ∼17,000, ∼15,000 and ∼12,000 for δ  = 0, 0.1 and 0.3, respectively. The computational domain was ten pipe radii in length and was resolved by up to 20 × 10 6 hexahedral finite volumes. The time step was chosen equal to a wall time unit; 1 Large Eddy TurnOver Time (LETOT) was thus resolved by 500 time steps and simul…

PhysicsPlug flowGeneral Computer ScienceTurbulenceDirect Numerical SimulationGeneral EngineeringDirect numerical simulationCurved pipeReynolds numberLaminar flowMechanicsCurved pipe;Direct Numerical Simulation;Turbulence budget;Turbulent flowCurvatureVortexTurbulent flowPhysics::Fluid Dynamicssymbols.namesakeClassical mechanicsTurbulence budgetsymbolsShear velocitySettore ING-IND/19 - Impianti Nucleari
researchProduct

Computation of MHD buoyant flows at low Pr in a cubic enclosure with a full resolution of the Hartmann layers

2002

PhysicsNatural ConvectionEnclosureLow Prandtl number fluidComputationResolution (electron density)EnclosureMagnetohydrodynamicMagnetohydrodynamicsCFDSettore ING-IND/19 - Impianti NucleariComputational physicsProceeding of International Heat Transfer Conference 12
researchProduct

Pressure drop at low reynolds numbers in woven-spacer-filled channels for membrane processes: CFD prediction and experimental validation

2017

The energy consumption due to pumping power is a crucial issue in membrane processes. Spacers provide mechanical stability and promote mixing, yet increasing pressure drop. Woven spacers and their behaviour at low Reynolds numbers are less studied in the literature. Nevertheless, they are typical of some membrane technologies, as reverse electrodialysis (RED). RED is a promising technology for electric power generation by the chemical potential difference of two salt solutions within a stack equipped by selective ion-exchange membranes. The mechanical energy required for pumping the feed solutions, can dramatically reduce the net power output. In this work computational fluid dynamics (CFD)…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSettore ING-IND/25 - Impianti Chimici02 engineering and technology010501 environmental sciencesComputational fluid dynamics01 natural sciencessymbols.namesakeReverse electrodialysiMembrane processesLow Reynolds numberPressure dropWoven spacer; Pressure drop; Low Reynolds numbers; CFD; Reverse electrodialysis; Membrane processesWoven spacerSettore ING-IND/19 - Impianti Nucleari0105 earth and related environmental sciencesPressure dropbusiness.industryReynolds numberMechanicsExperimental validation021001 nanoscience & nanotechnologyMembranesymbolsSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusinessCFD
researchProduct

Studio di fattibilità di un impianto E-Beam per il trattamento dei reflui civili dell’impianto di Acqua dei Corsari a Palermo

2007

researchProduct

Limiting current phenomena in electro-membrane processes: local occurrence or stack-dependent one?

2021

Background Electro-membrane processes are gaining great interest in the field of desalination and brine valorisation. However, limiting current phenomena can be a bottleneck for their techno-economic performances. In the present work, the in-out distribution of current density is measured to elucidate the achievement of limiting conditions in real stacks. Materials and Methods A 10-cell pairs Electrodialysis stack (10×40 cm2 active area), equipped with four-segmented electrodes, was tested. NaCl solutions at an inlet concentration ranging from 0.5 to 60 g/l were fed at velocities of either 2 or 4 cm/s in parallel flow. Current density-voltage curves were built by applying equal increasing s…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti Chimicilimiting currentElectrodialysicurrent distribution
researchProduct

On the Derivation of the Boiling Curve in Spray Cooling from Experimental Temperature-Time Histories

2006

Spray coolingChemistryBoilingThermodynamics
researchProduct

CFD prediction of solid particle distribution in baffled stirred vessels under partial to complete suspension conditions

2013

Solid-liquid mixing within tanks agitated by stirrers can be easily encountered in many industrial processes. It is common to find an industrial tank operating at an impeller speed N lower than the minimum agitation speed for the suspension of solid particles: under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work evaluates the capability of a Computational Fluid Dynamics (CFD) model to reliably predict the particle distribution throughout the tank under either partial or complete suspension conditions. A flat bottomed baffled tank stirred by a Rushton turbine was investigated. Both tr…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicilcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicilcsh:TP155-156lcsh:TK7885-7895lcsh:Chemical engineeringMixing Solid liquid suspensions CFDSettore ING-IND/19 - Impianti NucleariComputational Fluid Dynamics Baffled Stirred Vessel Solid Liquid Suspension
researchProduct

Simulazioni Numeriche del Campo di Moto e della Caduta di Pressione in Tubi Elicoidali

2009

TurbulenceHelical CoilSteam GeneratorCurved PipeCFDHeat TransferFluid FlowRANS Turbulence ModelPressure DropIRIS ReactorSettore ING-IND/19 - Impianti Nucleari
researchProduct

Influence of a Magnetic Field on Liquid Metal Free Convection in an Internally Heated Cubic Enclosure

2002

The buoyancy‐driven magnetohydrodynamic flow in a cubic enclosure was investigated by three‐dimensional numerical simulation. The enclosure was volumetrically heated by a uniform power density and cooled along two opposite vertical walls, all remaining walls being adiabatic. A uniform magnetic field was applied orthogonally to the gravity vector and to the temperature gradient. The Prandtl number was 0.0321 (characteristic of Pb–17Li at 300°C), the Rayleigh number was 104, and the Hartmann number was made to vary between 0 and 2×103. The steady‐state Navier–Stokes equations, in conjunction with a scalar transport equation for the fluid's enthalpy and with the Poisson equation for the electr…

PhysicsFinite volume methodNatural convectionApplied MathematicsMechanical EngineeringPrandtl numberEnclosureFree ConvectionInternal Heat GenerationMechanicsRayleigh numberMagnetohydrodynamicHartmann numberComputer Science ApplicationsPhysics::Fluid Dynamicssymbols.namesakeClassical mechanicsMechanics of MaterialssymbolsPoisson's equationConvection–diffusion equationSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD Predictions of Sufficient Suspension Conditions in Solid-Liquid Agitated Tanks

2012

Abstract Most research efforts on mechanically agitated solid-liquid contactors have been devoted to the assessment of the minimum impeller speed for complete off-bottom suspension, N js . Actually, many industrial vessels are operated at impeller speeds slightly lower than N js (Oldshue, 1983; Rieger et al., 1988). This suggests that the sufficient suspension condition, which is quantitatively specified in this paper by introducing a suitably defined quantity N ss , may represent a valid alternative to that of complete suspension. In the present work time-dependent RANS simulations were carried out with the aim of predicting the achievement of sufficient suspension conditions. The Eulerian…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicistirred tank Computational Fluid Dynamics (CFD) solid-liquid suspension complete suspension Unsuspended Solid Criterion (USC) sufficient suspensionMaterials sciencebusiness.industrySettore ING-IND/25 - Impianti ChimiciApplied MathematicsComputational MechanicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsComputational fluid dynamicsChemical engineeringMechanics of MaterialsModeling and SimulationSettore ING-IND/06 - FluidodinamicabusinessSuspension (vehicle)Engineering (miscellaneous)Solid liquidInternational Journal of Nonlinear Sciences and Numerical Simulation
researchProduct

Maximum Net Power Density Conditions in Reverse Electrodialysis Stacks

2018

Reverse Electrodialysis (RED) harvests electrical energy from a salinity gradient. The maximum obtainable net power density (NPD) depends on many physical and geometric variables. Some have a monotonic (beneficial or detrimental) influence on NPD, and can be regarded as “scenario” variables chosen by criteria other than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, have contrasting effects, so that the NPD maximum is obtained for some intermediate values of these parameters. A 1-D model of a RED stack was coupled here with an optimization algorithm to determine the conditions of maximum NPD in the space o…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse Electrodialysis Net power density Salinity Gradient Concentration Polarization Optimization Gradient AscentSettore ING-IND/19 - Impianti Nucleari
researchProduct

Green grass, red blood, blueprint: reflections on life, self-replication, and evolution

2006

BlueprintEnvironmental ethicsBiology
researchProduct

A novel 2D model for the assessment of deformation-induced flow redistribution phenomena in electrodialysis units

2022

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciElectromembrane process membrane deformation flow maldistribution fluid-structure interaction Darcy flowElectromembrane processFluid structure interactionflow maldistributionfluid-structure interactionmembrane deformationDarcy flowSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Effect of membrane profiles on the limiting current density in electrodialysis

2019

In the present work, we experimenrtally investigated the effect of different membrane profiles on the LCD, testing also different operating conditions.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciIon exchange membrane profiled membrane limiting current density electrodialysisSettore ING-IND/19 - Impianti Nucleari
researchProduct

Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations

1996

An experimental and numerical study of flow and heat transfer was conducted for a crossed-corrugated geometry, representative of compact heat exchangers under transitional and weakly turbulent conditions. Three-dimensional numerical predictions were obtained by a finite volume method using a variety of approaches ranging from laminar flow assumptions to standard and low-Reynolds number k-e turbulence models, direct simulation, and large-eddy simulation. In this paper, the various computational approaches are presented and their relative performance is discussed for various geometries and Reynolds numbers; results are compared with experimental measurements and literature data. Detailed expe…

Fluid Flow and Transfer ProcessesFinite volume methodMaterials scienceTurbulenceMechanical EngineeringThermodynamicsReynolds numberRangingLaminar flowMechanicsCondensed Matter PhysicsPhysics::Fluid Dynamicssymbols.namesakeFlow (mathematics)Heat transferHeat exchangersymbolsInternational Journal of Heat and Mass Transfer
researchProduct

On the Simulation of Solid Particle Distribution in Multiple Impeller Agitated Tanks via Computational Fluid Dynamics

1998

CFD Stirred Tank Multiple Impeller Turbulence Solid-Liquid Flow Multiphase FlowSettore ING-IND/19 - Impianti Nucleari
researchProduct

Prediction of flow fields in a dual-impeller stirred vessel

1999

Numerical simulations were connected for the flow field in a baffled tank stirred by a dual Rushton impeller. For this geometry, LDV measurements show a characteristic dependence of the flow patterns upon the position of the impellers. Two advanced modeling approaches were tested. In the first, the vessel was divided info two concentric blocks, coupled by, a sliding grin technique, and simulations were conducted in time-dependent mode. In the second approach, the vessel was modeled as two partially over-lapping I regions, the inner one rotating with the impeller and rite outer one stationary simulations were run in steady-state mode for each of the two regions, while information was iterati…

EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/24 - Principi Di Ingegneria ChimicaEnvironmental EngineeringBlade (geometry)business.industryTurbulenceGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciFlow (psychology)Mode (statistics)MechanicsConcentricPhysics::Fluid DynamicsDual impellerImpellerOpticsStirred tankMixingPosition (vector)Boundary value problembusinessCFDSettore ING-IND/19 - Impianti NucleariBiotechnology
researchProduct

CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution

2013

Abstract Industrial tanks devoted to the mixing of solid particles into liquids are often operated at an impeller speed N less than Njs (defined as the lowest speed allowing the suspension of all particles): under such conditions the distribution of solid-particles is very far from being homogeneous and very significant concentration gradients exist. The present work is devoted to assessing the capability of Computational Fluid Dynamics (CFD) in predicting the particle distribution throughout the tank. The CFD model proposed by Tamburini et al. [58] and successfully applied to the prediction of the sediment amount and shape was adopted here to simulate the particle distribution under partia…

EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSteady statebusiness.industryGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Mechanical engineeringGeneral ChemistryMechanicsComputational fluid dynamicsIndustrial and Manufacturing EngineeringRushton turbineImpellerSettore ING-IND/06 - FluidodinamicaEnvironmental ChemistryParticleMulti Fluid Model (MFM) Computational Fluid Dynamics (CFD) turbulence closure solid-liquid suspension partial suspension drag force stirred tank particle distribution Unsuspended Solid Criterion (USC)Suspension (vehicle)businessReynolds-averaged Navier–Stokes equations
researchProduct

Convezione magnetoidrodinamica in metalli liquidi in configurazioni rilevanti per la fusione nucleare - 2. Convezione naturale in geometrie bi- e tri…

2005

researchProduct

Investigation of the Cooling of Hot Walls by Liquid Water Sprays

1999

An experimental study was conducted for the heat transfer from hot walls to liquid water sprays. Four full cone, swirl spray nozzles were used at different upstream pressures, giving mass fluxes impinging on the wall, G, from 8 to 80 kg m(-2) s(-1), mean droplet velocities, U, from 13 to 28 m s(-1) and mean droplet diameters, D, from 0.4 to 2.2 mm. A target consisting of two slabs of beryllium-copper alloy, each 4 x 5 cm in size and 1.1 mm thick, was electrically heated to about 300 degrees C and then rapidly and symmetrically cooled by water sprays issuing from two identical nozzles. The midplane temperature was measured by a fast response, thin-foil thermocouple and the experimental data …

Fluid Flow and Transfer ProcessesMass fluxSettore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials scienceYield (engineering)Mechanical EngineeringNozzleThermodynamicsMechanicsHeat transfer coefficientCondensed Matter PhysicsHeat TransferCritical Heat FluxHeat fluxThermocoupleHeat transferLeidenfrost temperatureBoilingCooling curveWater spraySettore ING-IND/19 - Impianti Nucleari
researchProduct

Large-Eddy Simulation of Turbulent Flow and Heat Transfer in Plane and Rib-Roughened Channels

1992

Large-eddy simulation results are presented and discussed for turbulent flow and heat transfer in a plane channel with and without transverse square ribs on one of the walls. They were obtained with the finite-difference code Harwell-FLOW3D, Release 2, by using the PISOC pressure-velocity coupling algorithm, central differencing in space, and Crank-Nicolson time stepping. A simple Smagorinsky model, with van Driest damping near the walls, was implemented to model subgrid scale effects. Periodic boundary conditions were imposed in the streamwise and spanwise directions. The Reynolds number based on hydraulic diameter (twice the channel height) ranged from 10 000 to 40 000. Results are compar…

MeteorologyComputational MechanicsComputational fluid dynamicsLarge Eddy SimulationPipe flowPhysics::Fluid Dynamicssymbols.namesakeFluid dynamicsHydraulic diameterSettore ING-IND/19 - Impianti NucleariPhysicsbusiness.industryTurbulenceApplied MathematicsMechanical EngineeringReynolds numberFluid DynamicMechanicsHeat TransferComputer Science ApplicationsTurbulenceTransverse planeMechanics of MaterialssymbolsbusinessCFDLarge eddy simulation
researchProduct

Heavy Gas Dispersion Modelling Over a Topographically Complex Mesoscale

2005

Potentially dangerous events involving heavy gas dispersion and their severe consequences have been largely publicized by the media. Simplified models have been widely applied to describe the effects of these accidents. However, most simplified models deal with flat terrain scenarios and are based on quite crude simplifications of the complex phenomenology involved. In this paper the possibility of simulating the dispersion of heavy gas clouds over a large topographically complex area (tens of km) by a general purpose computational fluid dynamics (CFD) code is investigated. The aim is that of setting up a tool able to produce a realistic description of such dispersion processes, whose resul…

Environmental EngineeringMeteorologybusiness.industryGeneral Chemical EngineeringMesoscale meteorologyTerrainComputational fluid dynamicsGeneral purposeIndustrial siteEnvironmental ChemistrySafety Risk Reliability and QualitybusinessDispersion (water waves)Phenomenology (particle physics)GeologyGas dispersionMarine engineeringProcess Safety and Environmental Protection
researchProduct

Numerical Simulation of Low Reynolds Number Flow Fields in Unbaffled Stirred Vessels

2006

researchProduct

Direct numerical simulation of turbulent heat transfer in curved pipes

2012

Fully developed turbulent convective heat transfer in curved pipes was investigated by Direct Numerical Simulation for a friction velocity Reynolds number of 500, yielding bulk Reynolds numbers between 12 630 and ~17 350 according to the curvature (pipe radius/curvature radius). Three different curvatures were compared, i.e. 0 (straight pipe), 0.1 and 0.3. The Prandtl number was 0.86. The computational domain was a tract of pipe 5 diameters in length. A finite volume method was used, with multiblock structured grids of ~5.3x10E6 hexahedral volumes. Simulations were typically protracted for 20 LETOT’s starting from coarse-grid results. Results were post-processed to compute first and second …

Direct Numerical Simulation curved pipes turbulence heat transferSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the influence of curvature and torsion on turbulence in helically coiled pipes

2014

Turbulent flow and heat transfer in helically coiled pipes at Ret=400 was investigated by DNS using finite volume grids with up to 2.36×10^7 nodes. Two curvatures (0.1 and 0.3) and two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and thermally. The central discretization scheme was adopted for diffusion and advection terms, and the second order backward Euler scheme for time advancement. The grid spacing in wall units was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which were used to compute statistics. The results sho…

Pressure dropHistoryFinite volume methodDirect Numerical SimulationTurbulencehelically coiled pipeTorsion (mechanics)GeometrySecondary flowCurvatureNusselt numberComputer Science ApplicationsEducationTurbulencePhysics::Fluid DynamicsHeat transferSettore ING-IND/19 - Impianti NucleariMathematicsJournal of Physics: Conference Series
researchProduct

Multi-physical modelling of Reverse ElectroDialysis

2016

Energy extraction from salinity gradients (salinity gradient power, SGP) represents a novel and valuable renewable energy source. Among the existing SGP technologies, reverse electrodialysis (RED) is the oldest and one of the most promising. RED is a membrane-based electrochemical process that directly converts the salinity gradient energy into electric current. More precisely, in a RED unit two solutions at different concentration flow in two series of alternated channels, which are formed by piling two alternated series of cation and anion exchange membranes (CEMs and AEMs, respectively). The chemical potential difference between the two solutions generates an electric potential differenc…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse electrodialysis multi-physics finite elements profiled membranes spacersSettore ING-IND/19 - Impianti Nucleari
researchProduct

Flow and Heat Transfer in Corrugated Passages: Direct and Large-Eddy Simulation and Comparison with Experimental Results

1993

direct simulationcomputational fluid dynamicturbulenceheat transferlarge eddy simulationPlate heat exchangerSettore ING-IND/19 - Impianti Nucleari
researchProduct

Numerical simulations supporting process models of chemical engineering: applications for membrane systems

2019

This work presents computational fluid dynamics simulations aimed at characterizing flow and mass/heat transport mechanisms in spacer-filled channels for membrane processes, with particular reference to (reverse) electrodyalisis and membrane distillation.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/19 - Impianti NucleariCFD mass transfer heat transfer membrane process membrane deformation
researchProduct

Characterization of magnesium hydroxide from highly concentrated MgCl2 solutions

Magnesium hydroxideSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciNanoparticles
researchProduct

Sulla simulazione numerica di deflussi turbolenti con media transitoria - I. Moto sviluppato in un canale a sezione quadrata soggetto ad un gradiente…

2007

researchProduct

Power-Law Probability Density Functions and Corresponding Rank-Size Distributions: Properties, Limits and Shannon Entropy. Quaderno N. 3/2008, Dipart…

2008

researchProduct

Modifiche del Codice RELAP5 per lo Studio delle Perdite di Carico in Generatori di Vapore a Tubi Elicoidali Interessati da Flussi Bifase

2010

RELAP5Settore ING-IND/19 - Impianti Nucleari
researchProduct

Large-Eddy Simulation of Flow and Heat Transfer in Compact Heat Exchangers

1994

LES results are presented for different heat exchanger geometries. Subgrid terms were usually computed by the Smagorinsky model; preliminary comparative results are also given for the ‘dynamic’ subgrid model. The numerical methods used were those implemented in a commercial general-purpose code (CFDS-FLOW3D); they included a finite-volume approach, colocated body-fitted grids, central differencing for the advection terms, the SIMPLEC algorithm, and Crank-Nicolson time stepping. Predictions arc compared with experimental measurements (including local Nu distributions), and with results from a low-Reynolds number k-e model. In most cases, LES was more ‘robust’ and required little more CPU tim…

Plate heat exchangerMechanicsComputational Fluid DynamicSIMPLEC algorithmLarge Eddy SimulationPhysics::Fluid DynamicsNTU methodMoving bed heat exchangerHeat transferCompact Heat ExchangerMicro heat exchangerPlate fin heat exchangerSettore ING-IND/07 - Propulsione AerospazialeSettore ING-IND/19 - Impianti NucleariLarge eddy simulation
researchProduct

CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension

2012

Abstract In the literature on mechanically agitated solid–liquid systems, several methods are described to estimate the minimum impeller speed Njs at which all particles are suspended, but few studies have been devoted so far to their critical comparative assessment [67] . In the present paper, several alternative Njs prediction methods are applied to CFD results obtained for selected test cases covering a broad range of suspension conditions and impeller speeds. Results are compared with one another and with classic empirical correlations [88] . The aim of the work is to assess the adequacy of different methods for predicting Njs and, more generally, to contribute to a viable CFD-based str…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)Engineeringbusiness.industrySettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringMixing (process engineering)Mechanical engineeringGeneral ChemistryMechanicsStirred tank Multi-fluid model Computational fluid dynamics Solid–liquid two-phase flow Complete suspension speed Sufficient suspension speed Unsuspended solids criterionComputational fluid dynamicsIndustrial and Manufacturing EngineeringControl volumeImpellerEnvironmental ChemistrySuspension (vehicle)Reynolds-averaged Navier–Stokes equationsbusinessContactorChemical Engineering Journal
researchProduct

Mass transfer in ducts with transpiring walls

2019

Abstract The problem of mass transfer in ducts with transpiring walls is analysed: the concepts of “solvent” and “solute” fluxes are introduced, all possible sign combinations for these fluxes are considered, and relevant examples from membrane processes such as electrodialysis, reverse osmosis and filtration are identified. Besides the dimensionless numbers commonly defined in studying flow and mass transfer problems, new dimensionless quantities appropriate to transpiration problems are introduced, and their limiting values, associated with “drying”, “desalting” and “saturation” conditions, are identified. A simple model predicting the Sherwood number Sh under all possible flux sign combi…

Fluid Flow and Transfer ProcessesSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryMechanical EngineeringSchmidt numberFlow (psychology)02 engineering and technologyMechanicsComputational fluid dynamics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSherwood number010305 fluids & plasmasMass transfer Transpiring wall Sherwood number Computational fluid dynamics Parallel flowMass transfer0103 physical sciencesDiffusion (business)0210 nano-technologybusinessSaturation (chemistry)Settore ING-IND/19 - Impianti NucleariDimensionless quantityMathematicsInternational Journal of Heat and Mass Transfer
researchProduct

On the simulation of stirred tank reactors via computational fluid dynamics

2000

Abstract Predictions of flow fields in a stirred tank reactor, obtained by computational fluid dynamics, were used for the simulation of a mixing sensitive process consisting of two parallel reactions competing for a common reagent: A + B → Prod .1 A + C → Prod .2. Experimental data were obtained for A = OH − , B = 1 2 Cu ++ and C=ethyl-chloroacetate. For this reaction scheme the final selectivity of the process, easily measured by a simple colorimetric analysis of the residual Cu++, was found to depend on agitation speed and therefore on the mixing history during the batch process. The flow field-based three-dimensional simulations performed here led to predictions that compared very well …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringFlow (psychology)Mixing (process engineering)ThermodynamicsContinuous stirred-tank reactorMineralogyComputational fluid dynamicsturbulence modelIndustrial and Manufacturing EngineeringmixingSettore ING-IND/19 - Impianti Nucleariscalar transportSettore ING-IND/24 - Principi Di Ingegneria ChimicaComputer simulationChemistrybusiness.industryApplied MathematicsStirred tank reactorGeneral ChemistryMicromixingReagentBatch processingCFDbusiness
researchProduct

Improved Tomographic Particle Image Velocimetry and Thermography in Rayleigh-Bènard Convection

2001

PIVNatural ConvectionThermochromic Liquid CrystalThermographyRectangular EnclosureRayleigh-Bénard ConvectionSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD study on the influence of water transpiration on flow and mass transfer in channels with bipolar membranes

2018

The future energetic supply based on the massive use of renewable sources poses issues linked to fluctuations of power produced and consumed, thus requiring the use of energy storage systems.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimicielectrodialysiBipolar membranemass transportCFDreverse electrodialysiSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils

2015

Abstract The effects of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved and helical pipes were investigated by numerical simulation. Six dimensionless numbers characterizing the problem were identified, and an analysis was conducted on the possible combinations of signs of the gravitational and centrifugal buoyancy effects. Two distinct Richardson numbers were introduced in order to quantify the importance of the two types of buoyancy, and it was shown that, in the case of heating from the wall, a maximum realizable value of the centrifugal Richardson number exists which is a linear function of the curvature δ (ratio of pipe radius a to curvature radius c)…

Fluid Flow and Transfer ProcessesPhysicsRichardson numberBuoyancyMechanical EngineeringCentrifugal buoyancyCurved pipeTorsion (mechanics)ThermodynamicsLaminar flowMechanicsengineering.materialGravitational buoyancyCondensed Matter PhysicsCurvatureNusselt numberPhysics::Fluid DynamicsComputational fluid dynamics Laminar flowHeat transferHeat transferengineeringHelical coilSettore ING-IND/19 - Impianti NucleariDimensionless quantity
researchProduct

TRACE input model for SPES3 facility

2010

TRACESettore ING-IND/19 - Impianti Nucleari
researchProduct

Termovelocimetria tomografica ad immagini di particelle mediante cristalli liquidi termocromici sospesi - tecnica sperimentale e applicazione alla co…

2005

researchProduct

The Experimental Heat Transfer Curve in Spray Cooling as the Solution of a Minimum Problem

2006

researchProduct

Heat Transfer in Low-Prandtl Number Free Convection from Internally Heated Rectangular Enclosures

2000

Natural ConvectionRectangular EnclosureCFDLow Prandtl Number FluidSettore ING-IND/19 - Impianti NucleariInternal Heating
researchProduct

CFD simulation of solid-liquid suspension startup in a stirred tank

2008

CFD MODELLING SOLID-LIQUID SUSPENSION STIRRED TANK TRANSIENT
researchProduct

Investigation of flow and heat transfer in corrugated passages—I. Experimental results

1996

Abstract An experimental and numerical study of flow and heat transfer was conducted for a crossed-corrugated geometry, representative of compact heat exchangers including air preheaters for fossil-fuelled power plant. In this paper, we describe the method of applying thermochromic liquid crystals and true-colour image processing to give local Nusselt number distribution over the surface, and average Nu, both of quantitative reliability; a careful uncertainty analysis is also presented. Typical experimental results for heat transfer and pressure drop are presented and discussed for various geometries and Reynolds numbers, and are compared with literature data. Numerical predictions are disc…

Fluid Flow and Transfer ProcessesPressure dropDynamic scraped surface heat exchangerMaterials scienceMechanical EngineeringReynolds numberThermodynamicsHeat transfer coefficientMechanicsCondensed Matter PhysicsNusselt numberPhysics::Fluid Dynamicssymbols.namesakeHeat exchangerHeat transfersymbolsUncertainty analysisInternational Journal of Heat and Mass Transfer
researchProduct

Current distribution along electrodialysis stacks and its influence on the current-voltage curve: behaviour from near-zero current to limiting plateau

2023

The current maldistribution along the flow path of electrodialysis (ED) units is a well-known phenomenon. However, it has been poorly quantified via experimental tests so far. This work aimed at measuring the current distribution in an ED stack with 40 cm path length, provided with four-segment electrodes. The current-voltage curve (CVC) of each segment was recorded under several operating conditions of inlet concentrations and feed velocity. In the CVC of the first segment, the current increased approaching a saturation, while in that of the remaining segments it passed through a maximum and then settled at near-zero values when high voltage values were applied. The current fraction on the…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMechanical EngineeringGeneral Chemical EngineeringCurrent profileBrackish waterElectrode segmentation Current profile Concentration distribution Brackish water SeawaterElectrode segmentationGeneral Materials ScienceSeawaterGeneral ChemistryConcentration distributionSettore ING-IND/19 - Impianti NucleariWater Science and Technology
researchProduct

NUMERICAL SIMULATION OF SEDIMENT RESUSPENSION IN MECHANICALLY STIRRED VESSEL

2008

Numerical simulation CFD particle suspension stirred vessels
researchProduct

CFD modelling of profiled-membrane channels for reverse electrodialysis

2014

Abstract: Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations we…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProfiled MembraneSettore ING-IND/25 - Impianti ChimiciAnalytical chemistryConcentration PolarizationOcean Engineering02 engineering and technologyComputational fluid dynamics7. Clean energyComputational fluid dynamic020401 chemical engineeringReversed electrodialysisMass transferReverse electrodialysiFluid dynamics0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariWater Science and TechnologyConcentration polarizationReverse Electrodialysis; Profiled Membrane; Concentration Polarization; Computational Fluid Dynamics; Salinity GradientPressure dropbusiness.industryChemistrySalinity gradientMechanicsElectrodialysis021001 nanoscience & nanotechnologyPollution6. Clean waterMembraneSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusinessDesalination and Water Treatment
researchProduct

On some issues in the computational modelling of spacer-filled channels for membrane distillation

2017

Abstract This study addresses issues which arise in the computational and experimental modelling of flow and heat/mass transfer in membrane distillation and other processes adopting spacer-filled channels (either planar or spiral wound), but have not been sufficiently clarified in the literature so far. Most of the argumentations presented are based on original computational results obtained by the authors by finite volume simulations; some literature results are also considered. The questions addressed regard the choice of scales for the reduction of data and the definition of dimensionless numbers ( Re , f , Nu , Sh ); the definition of average heat or mass transfer coefficients; the comb…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciThermodynamicsMembrane distillation02 engineering and technologyMembrane distillationComputational fluid dynamics; Heat transfer; Mass transfer; Membrane distillation; Spacer filled channel; Chemistry (all); Chemical Engineering (all); Materials Science (all); Water Science and Technology; Mechanical Engineeringsymbols.namesakeThermal conductivity020401 chemical engineeringComputational fluid dynamicMass transferHeat transferGeneral Materials ScienceMass transferChemical Engineering (all)0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariWater Science and TechnologyFinite volume methodChemistryMechanical EngineeringChemistry (all)Reynolds numberGeneral ChemistrySpacer filled channel021001 nanoscience & nanotechnologyThermal conductionHeat transfersymbolsMaterials Science (all)0210 nano-technologyDimensionless quantityDesalination
researchProduct

MHD free convection in a liquid-metal filled cubic enclosure. I. Differential heating

2002

Fluid Flow and Transfer ProcessesEnclosureMechanical EngineeringFree ConvectionMagnetohydrodynamicCFDCondensed Matter PhysicsSettore ING-IND/19 - Impianti NucleariInternational Journal of Heat and Mass Transfer
researchProduct

Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes

2019

In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (&lt

Work (thermodynamics)Chemical Phenomenareverse electrodialysis02 engineering and technologyCFD; electrodialysis; fluid-structure interaction; ion exchange membrane; mass transfer; pressure drop; profiled membrane; reverse electrodialysis; structural mechanics;Physical Phenomenalcsh:ChemistryFluid dynamicsBiology (General)lcsh:QH301-705.5SpectroscopyGeneral MedicineMechanicsElectrodialysis021001 nanoscience & nanotechnologyComputer Science ApplicationsChemistry0210 nano-technologyTransport phenomenaCFDreverse electrodialysiion exchange membraneSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceQH301-705.5fluid-structure interactionComputational fluid dynamicsDeformation (meteorology)CatalysisArticleInorganic Chemistry020401 chemical engineeringstructural mechanicsReversed electrodialysisMass transfermass transferstructural mechanic0204 chemical engineeringPhysical and Theoretical ChemistryelectrodialysisMolecular BiologyQD1-999Settore ING-IND/19 - Impianti NucleariMechanical Phenomenapressure dropprofiled membranebusiness.industryOrganic ChemistryMembranes Artificiallcsh:Biology (General)lcsh:QD1-999electrodialysiHydrodynamicsbusinessSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Convezione magnetoidrodinamica in metalli liquidi in configurazioni rilevanti per la fusione nucleare - 4. Convezione mista in geometrie bidimensiona…

2004

researchProduct

Comparison of different hollow fibre haemodialysis module configurations by a CFD multiscale approach

2021

Objectives The study aims to predict 3-D flow and solute concentrations fields both for blood and dialysate and overall performance parameters (such as dialysate pressure drop and clearance) for different hollow-fibre haemodialysis modules. Methods A multiscale approach was used. At small (unit cell)-scale, dialysate flow and mass transfer around straight cylindrical fibres arranged in regular lattices were simulated. At module-scale, hydraulic permeabilities and mass transfer coefficients derived from small-scale simulations were used to define two different porous media representative of blood and dialysate, sharing the same volume and exchanging solute. Simulations involved different mod…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicihollow fibre membrane haemodialysis Computational Fluid Dynamics porous media mass transferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Investigation of heat transfer in spacer-filled channels by experiments and direct numerical simulations

2016

Abstract The analysis of flow fields and heat or mass transfer phenomena is of great importance in the optimum design of spacer-filled channel geometries for a variety of membrane-based processes. In the present work, models of spacer-filled channels often adopted in Membrane Distillation are simultaneously investigated by experiments and Computational Fluid Dynamics (CFD). Experiments rely on a non-intrusive technique, based on the use of Thermochromic Liquid Crystals (TLC) and digital image processing, and provide the local distribution of the convective heat transfer coefficient on a thermally active wall. CFD relies on steady-state (laminar flow) simulations in the lower end of the Reyn…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSettore ING-IND/25 - Impianti ChimiciFlow (psychology)Thermodynamics02 engineering and technologyHeat transfer coefficientComputational fluid dynamicsPhysics::Fluid Dynamicssymbols.namesake020401 chemical engineeringMass transferHeat transfer0204 chemical engineeringMembrane DistillationFluid Flow and Transfer ProcessesThermochromic Liquid CrystalTurbulencebusiness.industryMechanical EngineeringReynolds numberLaminar flowSpacer filled channelMechanics021001 nanoscience & nanotechnologyCondensed Matter PhysicsHeat transfersymbolsSettore ING-IND/06 - FluidodinamicaDirect numerical simulation; Heat transfer; Membrane Distillation; Spacer filled channel; Thermochromic Liquid Crystals; Fluid Flow and Transfer Processes0210 nano-technologybusinessDirect numerical simulation
researchProduct

Studio sperimentale dello "Spray Cooling" di pareti calde – 6. Caratterizzazione idrodinamica degli spray. Quaderno No. 3/05, Dipartimento di Ingegne…

2005

researchProduct

A novel TLC based technique for temperature field investigation in MD channel

2011

Membrane Distillation thermography temperature polarisation
researchProduct

Low-Prandtl Number Natural Convection in Volumetrically Heated Rectangular Enclosures - II. Square Cavity, AR=1

2001

Natural ConvectionEnclosureInternal Heat GenerationCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Low-Prandtl Number Natural Convection in Volumetrically Heated Rectangular Enclosures - III. Shallow Cavity, AR=0.25

2001

Abstract Natural convection in a volumetrically heated rectangular enclosure filled with a low-Prandtl number (Pr=0.0321) fluid was studied by direct numerical two-dimensional simulation. The enclosure had isothermal side walls and adiabatic top/bottom walls. The aspect ratio was 4 and the Grashof number Gr, based on conductive maximum temperature and cavity width, ranged from 3.79 × 104 to 1.26 × 109. According to the value of Gr, different flow regimes were obtained: steady-state, periodic, and chaotic. The first instability of the steady-state solution occurred at Gr≈3×105; the resulting time-periodic flow field consisted of a central rising plume and of convection rolls, periodically ge…

Fluid Flow and Transfer ProcessesConvectionNatural convectionMaterials scienceNatural ConvectionEnclosureMechanical EngineeringPrandtl numberEnclosureGrashof numberThermodynamicsInternal Heat GenerationMechanicsCondensed Matter PhysicsNusselt numberPlumePhysics::Fluid Dynamicssymbols.namesakeCombined forced and natural convectionsymbolsCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

ASSESMENT OF TEMPERATURE POLARIZATION IN MEMBRANE DISTILLATION CHANNELS BY LIQUID CRYSTAL THERMOGRAPHY

2014

AbstractThe measurement of local temperature distributions within a membrane distillation (MD) channel is a crucial step for the optimization of the channel and spacer geometry. This information allows the estimation of temperature polarization phenomena, which can dramatically influence the thermal efficiency of the process and the optimal choice of the geometric configuration (net spacer features, channel size, etc.). In the present work, a recently presented experimental technique, based on the use of thermochromic liquid crystals and digital image analysis, has been employed in order to assess the temperature polarization phenomena. The local heat transfer coefficient distribution on th…

Digital Image AnalysisThermal efficiencySettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSettore ING-IND/25 - Impianti ChimiciAnalytical chemistryOcean EngineeringHeat transfer coefficientengineering.materialMembrane distillationLiquid crystalMembrane DistillationSettore ING-IND/19 - Impianti NucleariWater Science and TechnologyPressure dropThermochromic Liquid CrystalDiamondMechanicsHeat TransferPolarization (waves)PollutionMembrane Distillation; Thermochromic Liquid Crystals; Heat Transfer; Temperature Polarization; Digital Image AnalysisTemperature PolarizationHeat transferengineering
researchProduct

Modelling hybrid systems for seawater desalination: electromembrane processes (RED, ARED and ED) coupled with RO

2018

The need to reduce energy consumption in seawater reverse osmosis processes has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis and reverse electrodialysis can act as a dilution step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO system. Each process model was validated before being used for a sensitivity analysis in which the effect of the integration on the cost saving in the overall process was assessed. The analysis was performed by changing (R)ED voltage and RO press…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/19 - Impianti NucleariReverse osmosis Hybrid systems Electromembrane processes Coupled model Cost saving
researchProduct

Multi-physical modelling of reverse electrodialysis

2017

Abstract Reverse electrodialysis (RED) is an electrochemical membrane process that directly converts the energy associated with the concentration difference between two salt solutions into electrical energy by means of a selective controlled mixing. The physics of RED involves the interaction of several phenomena of different nature and space-time scales. Therefore, mathematical modelling and numerical simulation tools are crucial for performance prediction. In this work, a multi-physical modelling approach for the simulation of RED units was developed. A periodic portion of a single cell pair was simulated in two dimensions. Fluid dynamics was simulated by the Navier-Stokes and continuity …

Work (thermodynamics)EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringAnalytical chemistry02 engineering and technology020401 chemical engineeringStack (abstract data type)Reversed electrodialysisFluid dynamicsPerformance predictionGeneral Materials Science0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariWater Science and TechnologyComputer simulationPlane (geometry)business.industryMechanical EngineeringGeneral ChemistryMechanics021001 nanoscience & nanotechnology6. Clean waterMembraneReverse electrodialysis multi-physical model finite element method power density profiled membranesSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusiness
researchProduct

CFD prediction of scalar transport in thin channels for reverse electrodialysis

2014

Reverse ElectroDialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the Computational Fluid Dynamics (CFD) simulation of the flow and concentration fields in these channels. In particular three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments the other of woven filaments. The transport of two passive scalars, representative of the ions …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryChemistrySettore ING-IND/25 - Impianti ChimiciScalar (mathematics)Ocean EngineeringMechanicsCFD Salinity Gradient Power renewable energy Reverse Electro Dialysis water electric energy spacer woven polarization concentration concentration boundary layer.Computational fluid dynamicsElectrodialysisPollutionReversed electrodialysisFluid dynamicsOsmotic powerElectronic engineeringSettore ING-IND/06 - FluidodinamicaPeriodic boundary conditionsbusinessWater Science and TechnologyConcentration polarization
researchProduct

Statistical physics: Some basic principles of fluctuation and noise theory

1983

Abstract Models have traditionally played a significant role in statistical mechanics. In view of the complexity of the system which statistical mechanics attempt to describe, this is not at all surprising. The study of simplified models has frequently revealed the underlying mathematical structure of many physical questions and in so doing the study of models has contributed directly to a clarification of several paradoxes which beset statistical mechanics. In this paper some of the models which appear to be useful for the discussion of non-equilibrium phenomena are examined in some detail. As usual these models are extremely simplified versions of the actual situations. It is, finally, as…

Generating FunctionPopulation DynamicStatistical mechanicsBartlett formalismNoise TheoryEpistemologyTheoretical physicsStochastic ProceNuclear Energy and EngineeringThe SymbolicNoise (video)Mathematical structureSettore ING-IND/19 - Impianti NucleariMathematicsAnnals of Nuclear Energy
researchProduct

CFD analysis of mass transfer in spacer-filled channels for reverse electrodialysis

2014

Reverse electrodialysis (RE) is a promising technology for electric power generation by converting the chemical potential difference of a salinity gradient, within a stack equipped by selective ion-exchange membranes. Concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry is a fundamental operating parameter for the optimization of the system. In this work, Computational Fluid Dynamic simulations were performed to predict fluid flow and mass transfer in spacer-filled channels for RE applications. A parametric analysis for different spacer geometries was carried out; in particular, woven and non woven spacers were si…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCFD Reverse Electrodialysis concentration polarization spacer-filled channelSettore ING-IND/19 - Impianti Nucleari
researchProduct

Conjugate Heat Transfer in Plate Heat Exchangers

2004

researchProduct

Top-covered unbaffled stirred tanks: experiments and numerical simulations

2015

In this work computational fluid dynamics was employed to predict the flow field of an unbaffled stirred tank from steady to turbulent conditions

CFD Mixing Stirred tankCFD Mixing Stirred tanks; UnbaffledUnbaffled
researchProduct

Unsteadiness and transition to turbulence in woven spacer filled channels for Membrane Distillation

2017

To characterize the performance of Membrane Distillation (MD) modules, channels filled with woven spacers were investigated by Computational Fluid Dynamics (including Direct Numerical Simulations and the use of the SST k-ω turbulence model) and by parallel experiments with Thermochromic Liquid Crystals. The cases considered here regard mutually orthogonal filaments with a spacer pitch to channel height ratio P/H=2, two spacer orientations θ with respect to the main flow (0° and 45°), and bulk Reynolds numbers Re from ∼200 to ∼2000, an interval of great interest in practical MD applications. For both values of θ, CFD predicted steady-state flow for Re up to ∼300, and chaotic flow …

HistoryFlow (psychology)Thermodynamics02 engineering and technologyComputational fluid dynamicsEducationPhysics::Fluid Dynamicssymbols.namesake020401 chemical engineeringLiquid crystal0204 chemical engineeringbusiness.industryTurbulenceChemistryOscillationSpacer-filled channels CFD membrane distillation turbulence RANS DNSReynolds numberMechanics021001 nanoscience & nanotechnologyComputer Science ApplicationsHeat transfersymbols0210 nano-technologyReynolds-averaged Navier–Stokes equationsbusiness
researchProduct

Numerical Simulation of MHD Fully Developed Buoyant Flow at Low Pr: “Direct” vs. “Ad hoc” Treatment of the Hartmann Layers

2001

Natural ConvectionHartmann LayerMagnetohydrodynamicCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

A CFD MODEL FOR THE PERFORMANCE PREDICTION OF HOLLOW FIBRE HAEMODIALYSIS MODULES

2020

Objectives: The model proposed aims to predict how geometric, transport and operative parameters affect the performances of hollow-fibre membrane modules for haemodialysis, especially solute clearance. Methods: A two-scale approach was used. Preliminarily, dialysate flow and mass transfer around fibre bundles were simulated at Unit Cell level, i.e. in a single periodic unit of the bundle. For a given porosity, both regular lattices (square or hexagonal) and random fibre arrangements were studied. From the predicted friction coefficients and Sherwood numbers, permeability and solute exchange terms were derived to be used in a porous media model of the whole module. Solute concentrations on t…

CFD hemodialysis artificial kidney hollow fibres membranes
researchProduct

CFD prediction of shell-side flow and mass transfer in regular fiber arrays

2021

Numerical simulations were conducted for fully developed, steady-state flow with mass transfer in fiber bundles arranged in regular lattices. The porosity was 0.5 and the Schmidt number 500. Several combinations of axial flow, transverse flow and flow attack angles in the cross-section plane were considered. The axial and transverse Reynolds numbers Rez , ReT were made to vary from 10(^−4) to 10(^2). Concentration boundary conditions, and the definition of an average Sherwood number, were addressed. Results for the hydraulic permeability were compared with the literature. Both hexagonal and square lattices were found to be hydraulically almost isotropic up to transverse flow Reynolds number…

Fluid Flow and Transfer ProcessesPhysicsSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMechanical EngineeringComputational fluid dynamics Viscous flow Shell-side mass transfer Rod array Cylinder arraySchmidt numberIsotropyReynolds number02 engineering and technologyMechanics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSherwood number010305 fluids & plasmasPhysics::Fluid DynamicsTransverse planesymbols.namesakeAxial compressorFlow (mathematics)Mass transfer0103 physical sciencessymbols0210 nano-technologySettore ING-IND/19 - Impianti Nucleari
researchProduct

Combined Experimental and Numerical Study of Local Heat Transfer Coefficient by Liquid Crystal Thermography

1998

Thermochromic liquid crystalheat transferCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Analisi Mediante Il Codice TRACE Delle Principali Fenomenologie Caratterizzanti Il Transitorio Conseguente Ad Una Rottura A Ghigliottina Nella Linea …

2011

SPES-3Settore ING-IND/19 - Impianti NucleariDVI break
researchProduct

Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks

2017

Abstract Different computer-based simulation models, able to predict the performance of Reverse ElectroDialysis (RED) systems, are currently used to investigate the potentials of alternative designs, to orient experimental activities and to design/optimize prototypes. The simulation approach described here combines a one-dimensional modelling of a RED stack with a fully three-dimensional finite volume modelling of the electrolyte channels, either planar or equipped with different spacers or profiled membranes. An advanced three-dimensional code was used to provide correlations for the friction coefficient (based on 3-D solutions of the continuity and Navier-Stokes equations) and the Sherwoo…

EngineeringSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciReverse electrodialysis; Saline Gradient Energy; Ion Exchange Membrane; Computational Fluid Dynamics; Mass transferFiltration and Separation02 engineering and technologyComputational Fluid DynamicComputational fluid dynamicsBiochemistry020401 chemical engineeringStack (abstract data type)Reversed electrodialysisReverse electrodialysiPerformance predictionMass transferGeneral Materials Science0204 chemical engineeringPhysical and Theoretical ChemistrySettore ING-IND/19 - Impianti NucleariSimulationIon Exchange MembraneLaplace's equationSettore ING-IND/24 - Principi Di Ingegneria ChimicaSaline Gradient EnergyFinite volume methodbusiness.industryScalar (physics)Mechanics021001 nanoscience & nanotechnologySettore ING-IND/06 - Fluidodinamica0210 nano-technologyConvection–diffusion equationbusinessJournal of Membrane Science
researchProduct

Fully developed laminar flow and heat transfer in serpentine pipes

2015

Abstract A serpentine pipe is a sequence of parallel straight pipe segments connected by U-bends. Its geometry is fully characterized by pipe radius, a , bend curvature radius, c and length of the straight segments, l . The repeated curvature inversion forces the recirculation (secondary flow) pattern to switch between two specular configurations, which may enhance mixing and heat or mass transfer with respect to a constant-curvature pipe at the cost of an increase in pressure drop. In the present work, fully developed laminar flow and heat transfer in serpentine pipes were investigated by numerical simulation. The curvature δ  =  a / c was made to vary between 0.1 and 0.5 while the paramet…

Pressure dropMaterials sciencePrandtl numberGeneral EngineeringCurved pipeReynolds numberLaminar flowMechanicsSerpentine pipeStokes flowComputational fluid dynamicsCondensed Matter PhysicsCurvatureNusselt numberPhysics::Fluid Dynamicssymbols.namesakeHeat transfersymbolsU bendSecondary flowSettore ING-IND/19 - Impianti Nucleari
researchProduct

A Computational Approach to Conjugate Heat Transfer between Two Fluids in Plate Heat Exchangers of Arbitrary Geometry

2002

Conjugate Heat TransferPlate Heat ExchangerCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Mixed MHD convection and Tritium transport in fusion-relevant configurations

2005

Mixed MHD flow and Tritium transport were computed for a slender poloidal duct, representative of a DEMO HCLL blanket element. 2-D flow and temperature fields were computed in the duct's cross section under the assumption of parallel, fully developed flow, while Tritium concentration C was found by solving a fully 3-D problem with simplifying assumptions at the duct's ends. The spatial distribution of C depended on the intensity and direction of the forced flow. Significant peak factors were obtained if the net flow rate was so low that re-circulation occurred; C maxima were attained near the walls for upward flow, in the core region for downward flow.

ConvectionPhysicsMechanical EngineeringHCLL blanketMechanicsBlanketFusion powerMagnetohydrodynamicVolumetric flow ratePhysics::Fluid DynamicsNuclear physicsNuclear Energy and EngineeringCombined forced and natural convectionFlow conditioningGeneral Materials ScienceDuct (flow)Mixed convectionMagnetohydrodynamicsSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Modelling Laminar and Turbulent Combustion Problems Using ANSYS-CFX. Quaderno N. 1/2008, Dipartimento di Ingegneria Nucleare, Università degli Studi …

2008

researchProduct

Filtering of the Navier-Stokes Equations in the Context of Time-Dependent Flows

1998

Turbulent FlowNavier-Stokes EquationCFDTurbulence ModelFilteringSettore ING-IND/19 - Impianti Nucleari
researchProduct

A parametric CFD study of hollow fiber membrane modules for hemodialysis

2022

Hemodialysis is a membrane-based process in which solute transport from the patient’s blood to a rinsing solution (dialysate) occurs by diffusion and ultrafiltration. Devices used in hemodialysis are cylindrical modules filled with hollow-fiber membranes which allow the removal of toxic substances and metabolic wastes from the blood, but inhibit the passage of proteins and cells to the dialysate. A predictive porous-media model of hemodialysis was developed and validated against experimental data. Unlike previous literature models, it requires only basic membrane properties (hydraulic and diffusive permeabilities and reflection coefficients) instead of relying on empirically adjusted global…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciComputational fluid dynamics Hemodialysis Hollow fiber membrane Mass transfer Porous mediaSettore ING-IND/19 - Impianti Nucleari
researchProduct

A novel colorimetric experimental technique for the characterisation of metal hydroxides reactive crystallization phenomena

2021

The reactive crystallization of metal hydroxides constitutes a field of raising interest driven by the importance of metals recovery and the wide industrial applications of their hydroxides. A popular example is related to the case of magnesium hydroxide (Mg(OH)2), which is widely employed in the fields of water treatment, desulphurization of fuel gases, pharmaceutical industry, refractory field and flame retardants

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMagnesium HydroxideImage-processing techniqueNucleation induction periodSettore ING-IND/19 - Impianti Nucleari
researchProduct

Three-Dimensional Flow and Temperature Distribution in Rayleigh-Bènard Convection Using Thermochromic Liquid Crystals and Digital Image Processing

2000

PIVNatural ConvectionThermochromic Liquid CrystalDigital Image ProcessingThermographyRectangular EnclosureRayleigh-Bénard ConvectionSettore ING-IND/19 - Impianti Nucleari
researchProduct

Flow and Heat Transfer in Corrugated Passages: Direct and Large Eddy Simulation and Comparison with Experimental Results

1993

Direct and large-eddy numerical simulations are presented for the transitional and turbulent flow with heat transfer in corrugated passages, representative of compact heat exchangers such as rotary air preheaters (regenerators), at Reynolds number ranging from 103 to 104. Pressure drop and heat transfer results are compared with wind-tunnel experimental data; the agreement is quite satisfactory, and superior to that obtained by more traditional methods.

Pressure dropEngineeringbusiness.industryTurbulenceFlow (psychology)Reynolds numberThermodynamicsMechanicsPhysics::Fluid Dynamicssymbols.namesakeHeat exchangerHeat transfersymbolsMicro heat exchangerbusinessPhysics::Atmospheric and Oceanic PhysicsLarge eddy simulation
researchProduct

Reciprocating Flow in a Plane Channel: Comparison of RANS Turbulence Models and Direct Numerical Simulation

2009

Direct Numerical SimulationUnsteady Turbulent FlowRANS Turbulence ModelsCFDHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Natural Convection Cooling of a Hot Vertical Wall Wet by a Falling Liquid Film

2008

Abstract The system studied is a plane channel in which one of the two vertical walls is kept at an arbitrary temperature profile and may be partially or completely wet by a falling liquid film, while the opposite wall is adiabatic. Air from the environment flows along the channel with a mass flow rate which depends on the balance between hydraulic resistances and buoyancy forces. These latter, in their turn, depend on the distribution of temperature and humidity (hence, density) along the channel and eventually on the heat and mass transferred from wall and film to the humid air. A simplified computational model of the above system was developed and applied to the prediction of relevant qu…

ConvectionBuoyancyMaterials scienceThermodynamicsengineering.materialPhysics::Fluid DynamicsMass flow rateEvaporative CoolingFluid FlowPhysics::Atmospheric and Oceanic PhysicsEngineering & allied operationsSettore ING-IND/19 - Impianti NucleariFluid Flow and Transfer ProcessesNatural convectionNatural ConvectionMechanical Engineeringfree convection liquid film humid air evaporative cooling containment cooling heat and mass transferHumidityMechanicsContainmentCondensed Matter PhysicsHeat TransferPassive CoolingCoolantVolumetric flow rateLiquid FilmNuclear ReactorDecay Heat Removalengineeringddc:620Evaporative cooler
researchProduct

Direct numerical simulations of creeping to early turbulent flow in unbaffled and baffled stirred tanks

2018

Abstract It has been known for a long time that the fluid flow and several global quantities, such as the power and pumping numbers, are about the same in baffled and unbaffled mechanically stirred vessels at low Reynolds numbers, but bifurcate at some intermediate Re and take drastically different values in fully turbulent flow. However, several details are not yet completely understood, notably concerning the relation of this bifurcation with the flow features and the transition to turbulence. In order to shed light on these issues, computational fluid dynamics was employed to predict the flow field in two vessels stirred by a six-bladed Rushton turbine at Reynolds numbers from 0.2 to 600…

General Chemical EngineeringDirect numerical simulationBaffle02 engineering and technologyIndustrial and Manufacturing EngineeringPhysics::Fluid Dynamicssymbols.namesakeImpellerStirred tank020401 chemical engineeringComputational fluid dynamicMixingFluid dynamicsChemical Engineering (all)0204 chemical engineeringPhysicsTurbulenceApplied MathematicsChemistry (all)Reynolds numberGeneral ChemistryMechanicsStokes flow021001 nanoscience & nanotechnologyRushton turbineTransition to turbulenceRushton turbinesymbols0210 nano-technologyDirect numerical simulation
researchProduct

Convezione magnetoidrodinamica in metalli liquidi in configurazioni rilevanti per la fusione nucleare - 3. Convezione mista in geometrie monodimensio…

2004

researchProduct

Fluid-structure interaction in electromembrane processes: modelling of membrane deformation, fluid dynamics and mass transfer

2018

In recent years, water and energy supply issues have boosted a noticeable interest in the scientific community on electromembrane processes such as electrodialysis and reverse electrodialysis. In order to gain an important place in the industrial market, technological challenges on various aspects are involved for the optimization of these processes. In this context, profiled membranes exhibit interesting performances and offer countless geometric alternatives. However, the mechanical behavior of the membranes and its interaction with fluid dynamics has been poorly investigated so far. In membrane-based processes, a trans-membrane pressure (Ptm) between the different solutions flowing throu…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse electrodialysiMembrane deflectionFluid-structure interactionElectrodialysiCFDSettore ICAR/08 - Scienza Delle CostruzioniSettore ING-IND/19 - Impianti NucleariIon exchange membrane
researchProduct

Convezione magnetoidrodinamica in metalli liquidi in configurazioni rilevanti per la fusione nucleare - 1. Aspetti generali ed equazioni del moto. Qu…

2004

researchProduct

A Test Rig for the Investigation of Free Convection Heat Transfer in Enclosures at High Rayleigh Number

1998

Natural ConvectionRectangular EnclosureHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Unsteady turbulence in plane channel flow

2011

Abstract Direct numerical simulations were conducted for oscillating flow with zero time mean (reciprocating flow) in a plane channel subject to a harmonic forcing term of varying amplitude and frequency. The results confirmed the existence of four flow regimes (laminar, “disturbed laminar”, intermittently turbulent, and fully turbulent) depending on the above parameters. The flow behaviour was found to depend on the complex interplay of mean and turbulence quantities, as described by the closed loop formed by the streamwise Reynolds-averaged momentum equation in conjunction with the exact transport equations for the turbulent (Reynolds) stresses. A crucial role in this loop appeared to be …

PhysicsGeneral Computer ScienceTurbulenceChézy formulaK-epsilon turbulence modelUnsteady turbulence Channel flow Direct Numerical Simulation Turbulence BudgetGeneral EngineeringTurbulence modelingLaminar flowK-omega turbulence modelMechanicsOpen-channel flowPhysics::Fluid DynamicsClassical mechanicsTurbulence kinetic energySettore ING-IND/19 - Impianti NucleariComputers & Fluids
researchProduct

k-epsilon Predictions of Heat Transfer in Turbulent Recirculating Flows Using an Improved Wall Treatment

1989

k-epsilonCFDTurbulence ModelHeat TransferFluid FlowWall FunctionsSettore ING-IND/19 - Impianti Nucleari
researchProduct

Friction and Heat Transfer in Membrane Distillation Channels: An Experimental Study on Conventional and Novel Spacers

2022

The results of an experimental investigation on pressure drop and heat transfer in spacer-filled plane channels, which are representative of Membrane Distillation units, are presented and discussed. Local and mean heat transfer coefficients were obtained by using Thermochromic Liquid Crystals and Digital Image Processing. The performances of a novel spacer geometry, consisting of spheres that are connected by cylindrical rods, and are hereafter named spheres spacers, were compared with those of more conventional woven and overlapped spacers at equal values of the Reynolds number Re (in the range ~150 to ~2500), the pitch-to-channel height ratio, the flow attack angle and the thermal boundar…

spacer-filled channelSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProcess Chemistry and Technologyheat transferChemical Engineering (miscellaneous)Membrane distillationFiltration and Separationspheres spacermembrane distillation; heat transfer; pressure drop; spacer-filled channel; spheres spacer; thermochromic liquid crystalsthermochromic liquid crystalsSettore ING-IND/19 - Impianti Nuclearipressure dropMembranes
researchProduct

Modelling and cost analysis of hybrid systems for seawater desalination: Electromembrane pre-treatments for Reverse Osmosis

2019

Abstract The need to reduce energy consumption in seawater Reverse Osmosis (RO) process has pushed research towards the development of new hybrid systems in which, for example, other membrane processes can be used to pre-treat seawater. Electrodialysis (ED) and Reverse Electrodialysis (RED) can act as a pre-desalting step before seawater enters the RO unit, thus leading to an important energy saving in RO. In this work, two coupled models are proposed for the RED-RO and ED-RO systems. Each process model was validated. Then a sensitivity analysis was performed to assess the effect of the integration on the overall process cost saving. The analysis was performed by changing ED or RED voltage …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCostGeneral Chemical Engineering02 engineering and technology7. Clean energy020401 chemical engineeringReversed electrodialysisGeneral Materials ScienceSensitivity (control systems)0204 chemical engineeringElectromembrane proceReverse osmosisProcess engineeringSettore ING-IND/19 - Impianti NucleariWater Science and Technologybusiness.industryMechanical EngineeringHybrid proceGeneral ChemistryEnergy consumptionElectrodialysis021001 nanoscience & nanotechnologyAssisted reverse electrodialysi6. Clean waterEnergy consumptionProcess intensificationHybrid systemEnvironmental scienceSeawaterProcess costing0210 nano-technologybusinessDesalination
researchProduct

Complete Numerical Simulation of Flow Fields in Baffled Stirred Vessels: The Inner-Outer Approach

1994

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciStirred tankSettore ING-IND/25 - Impianti ChimiciCFDSettore ING-IND/19 - Impianti Nucleariturbulence modelling
researchProduct

Modifiche del codice RELAP5/MOD3.2.b per lo studio delle perdite di carico e dello scambio termico in condotti elicoidali interessati da deflussi bif…

2011

L’attività di ricerca svolta nell’ambito della linea progettuale LP2-B.2 del programma PAR 2008-09 (CERSE III) ha visto una prima fase in cui è stato ulteriormente sviluppato il lavoro svolto nel corso dei precedenti programmi CERSE [1, 2], riguardante la validazione del codice termoidraulico avanzato Relap5/Mod3.2.b, modificato per il calcolo delle cadute di pressione in tubi elicoidali interessati da deflussi monofase e bifase, ed una seconda fase che ha comportato l’implementazione di nuove procedure valide per lo studio dello scambio termico bifase in condotti elicoidali, in aggiunta a quelle relative al solo scambio termico monofase, in precedenza implementate. Per quanto riguarda ques…

Relap5/mod3.2b generation iv LFR condotti elicoidali deflussi bifaseSettore ING-IND/19 - Impianti Nucleari
researchProduct

An Experimental Investigation of the Spray Cooling of Hot Walls

2005

researchProduct

Experiments and modelling for determining the Limiting Current Density in Electrodialysis units

2018

In the present work, in order to explore such issues on the LCD identification, we performed in-situ measurements with ED units, assessing the influence of operating conditions and validating a purposely implemented process simulator, which was then used for further investigation

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciElectrodialysis Limiting Current Density modelling CFD concentration polarizationSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD analysis of concentration polarization phenomena in spacer-filled channels for Reverse Electro-Dialysis

2012

In this work, carried out within the EU-FP7 funded REAPower project, CFD simulations were carried out in order to study the fluid flow behaviour and mass transport phenomena within spacer-filled channels.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciFluid DynamicSalinity gradient powerconcentration polarizationmodelingspacer filled channelReapower ProjectCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD predictions of turbulent two-phase flow in helical coils

2012

Turbulent two-phase flow in a helical pipe was simulated by means of CFD using the ANSYS-CFX code, based on a finite-volume multi-fluid approach. The focus was on flow patterns and frictional pressure drops; inter-phase heat and mass transfer and heat exchange with the pipe walls were not included and physical properties were assumed constant for each phase. The computational domain included a single, vertical axis, coil turn; the flow was assumed to be fully developed. Geometry and physical conditions were representative of the IRIS nuclear reactor steam generators (saturated water at 58 bar, pressure gradient of 0.1 bar/m). Void fraction and computational options (homogeneous vs. inhomo…

Two Phase Flow Computational Fluid Dynamics Helical CoilSettore ING-IND/19 - Impianti Nucleari
researchProduct

Computational fluid dynamics and its application to transport processes

2007

Fluid transport behaviour is of great importance within the chemical process industry and in biotechnology. The complexity of this behaviour, reflected in the nature of the fundamental partial differential equations which describe it analytically, means that it has to be treated by numerical methods. In this paper the basic equations are given, and the approaches necessary to treat laminar and turbulent flows are carefully explained. As digital computers have increased in size, so has the comprehensiveness of the problems which can be treated, and the development of typical computer programs is described. Problems of accuracy and experimental validation are also surveyed, and it is shown th…

EngineeringPartial differential equationRenewable Energy Sustainability and the EnvironmentTurbulencebusiness.industryGeneral Chemical EngineeringNumerical analysisOrganic ChemistryMechanical engineeringLaminar flowComputational fluid dynamicsFluid transportPollutionInorganic ChemistryFuel TechnologyFlow (mathematics)Heat transferCFDbusinessFluid FlowWaste Management and DisposalConvective TransportBiotechnologyJournal of Chemical Technology & Biotechnology
researchProduct

Mechanical-fluid dynamics coupled model for profiled Ion Exchange Membranes design

2018

In this work, we developed an advanced model useful for the design of profiled IEMs, based on the coupled simulation of local mechanical deformations and of fluid dynamics and associated mass transport phenomena within deformed channels

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimicielectrodialysideflectionCFDSettore ICAR/08 - Scienza Delle Costruzionireverse electrodialysiSettore ING-IND/19 - Impianti NucleariIon exchange membrane
researchProduct

The Nukiyama Curve in Water Spray Cooling: its Derivation from Temperature-Time Histories and its Dependence on the Quantities that Characterize Drop…

2007

Abstract Heat transfer from hot aluminium walls to cold water sprays was investigated. The method used was the transient two-side symmetric cooling of a planar aluminium target, previously heated to temperatures of up to 750 K, by twin sprays issuing from full-cone swirl spray nozzles of various gauge. The target’s mid-plane temperature was recorded during the cooling transient by thin-foil K thermocouples and a high-frequency data acquisition system. In order to determine the wall temperature Tw, the wall heat flux q w ″ and the q w ″ - T w heat transfer (Nukiyama) curve, two different approaches were used: the first was based on the solution of an inverse heat conduction problem, the seco…

Fluid Flow and Transfer ProcessesMaterials sciencespray coolingCritical heat fluxMechanical EngineeringDrop (liquid)Thermodynamicsinverse conduction problemHeat transfer coefficientCondensed Matter Physicsinduction heatingDrop impactPhysics::Fluid DynamicsHeat fluxThermocoupleHeat transferMass flow rateSettore ING-IND/19 - Impianti Nucleari
researchProduct

Experimental and computational investigation of heat transfer in channels filled by woven spacers

2017

Abstract Models of woven-type spacer-filled channels were investigated by Computational Fluid Dynamics (CFD) and parallel experiments in order to characterize the performance of Membrane Distillation (MD) modules. The case of overlapped spacers was analysed in a companion paper. Experiments were based on a non-intrusive technique using Thermochromic Liquid Crystals (TLC) and digital image processing, and provided the distribution of the local convective heat transfer coefficient on a thermally active wall. CFD simulations ranged from steady-state conditions to unsteady and early turbulent flow, covering a Reynolds number interval of great practical interest in real MD applications. A specif…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSettore ING-IND/25 - Impianti ChimiciComputational Fluid Dynamics; Digital image processing; Membrane Distillation; Thermochromic Liquid Crystals; Woven spacerFlow (psychology)02 engineering and technologyHeat transfer coefficientComputational fluid dynamicsComputational Fluid Dynamicsymbols.namesake020401 chemical engineeringDigital image processing0204 chemical engineeringMembrane DistillationWoven spacerFluid Flow and Transfer ProcessesSettore ING-IND/24 - Principi Di Ingegneria ChimicaThermochromic Liquid CrystalTurbulencebusiness.industryMechanical EngineeringReynolds numberMechanics021001 nanoscience & nanotechnologyCondensed Matter PhysicsAspect ratio (image)Heat transfersymbols0210 nano-technologybusinessDigital image processing
researchProduct

Turbulent heat transfer in spacer-filled channels: Experimental and computational study and selection of turbulence models

2019

Abstract Heat transfer in spacer-filled channels of the kind used in Membrane Distillation was studied in the Reynolds number range 100–2000, encompassing both steady laminar and early-turbulent flow conditions. Experimental data, including distributions of the local heat transfer coefficient h, were obtained by Liquid Crystal Thermography and Digital Image Processing. Alternative turbulence models, both of first order (k-e, RNG k-e, k-ω, BSL k-ω, SST k-ω) and of second order (LRR RS, SSG RS, ω RS, BSL RS), were tested for their ability to predict measured distributions and mean values of h. The best agreement with the experimental results was provided by first-order ω-based models able to …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimici020209 energyLiquid crystal thermographyMembrane distillation02 engineering and technologyHeat transfer coefficientMembrane distillation01 natural sciences010305 fluids & plasmassymbols.namesakeComputational fluid dynamic0103 physical sciencesDigital image processingHeat transfer0202 electrical engineering electronic engineering information engineeringRange (statistics)Overlapped spacerSettore ING-IND/19 - Impianti NucleariRANS turbulence modelPhysicsTurbulenceGeneral EngineeringReynolds numberLaminar flowMechanicsCondensed Matter PhysicsHeat transfersymbols
researchProduct

CFD parametrical study of the spacer geometry for Membrane Distillation

Membrane Distillation (MD) is a thermal process that separates water from aqueous solutions containing non-volatile components such as salt. Water vapor from the hot feed channel permeates through a hydrophobic membrane thanks to a partial pressure gradient, and condenses in the cool channel. One of the main advantages of MD is the easy coupling with renewable resources, as the solar thermal energy. In the various MD configurations developed, net spacers are used in order to support the membrane, thus creating the channels; moreover, they can counteract the side effects of temperature polarization by promoting mixing. However, the presence of the spacer involves an increase of pressure drop…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCFD Membrane Distillation Spacer-filled channel Heat transfer Temperature polarization Pressure dropSettore ING-IND/19 - Impianti Nucleari
researchProduct

Education and Research in Nuclear Engineering and Radiological Protection at Nuclear Engineering Department of Palermo University

2010

Education Research Nuclear Engineering Radiological Protection Palermo UniversitySettore ING-IND/19 - Impianti Nucleari
researchProduct

Transient Development of Rayleigh-Bénard Convection: a TLC Study

2011

Thermochromic Liquid Crystal Rayleigh-Bénard convection natural convection Particle Image Velocimetry thermographySettore ING-IND/19 - Impianti Nucleari
researchProduct

A Computer-Controlled Experimental Facility for the Investigation of High Rayleigh Number Free Convection in Enclosures

1999

EnclosureFree convectionHeat flow meterSettore ING-IND/19 - Impianti Nucleari
researchProduct

The Use of Thermochromic Liquid Crystals and Image Processing for Technical and Biomedical Thermography

1999

Thermochromic Liquid CrystalDigital Image ProcessingThermographyHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Mixed MHD Convection and Tritium Transport in HCLL TBM Breeder Units for the ITER Fusion Reactor

2006

researchProduct

One-dimensional Mixed MHD Convection

2006

The parallel, fully developed flow of an electrically conducting fluid between plane parallel walls under the simultaneous influence of a driving pressure head, buoyancy, and magnetohydrodynamic (MHD) forces is studied. The fluid is assumed to be internally heated and the flow is modeled as one-dimensional and incompressible, while the Boussinesq approximation is adopted for the buoyancy terms. Analytical solutions are obtained for temperature, velocity and electrical potential under different electrical boundary conditions, forced to natural convection intensity ratios and values of the magnetic induction. Generalized working charts are presented which synthetically describe the system''s …

Fluid Flow and Transfer ProcessesPhysicsBuoyancyNatural convectionMagnetohydrodynamic generatorMechanical EngineeringMAGNETIC FIELDMechanicsCUBIC ENCLOSUREengineering.materialCondensed Matter PhysicsOpen-channel flowlaw.inventionPhysics::Fluid DynamicsClassical mechanicslawCombined forced and natural convectionCHANNEL FLOWengineeringMagnetohydrodynamic driveMagnetohydrodynamicsBoussinesq approximation (water waves)LIQUID-METAL
researchProduct

Transition to turbulence in serpentine pipes

2017

Abstract The geometry considered in the present work (serpentine pipe) is a sequence of U-bends of alternate curvature. It is characterized by pipe diameter, d = 2a and bend diameter, D = 2c. The repeated curvature inversion forces the secondary flow pattern, typical of all flows in curved ducts, to switch between two mirror-like configurations. This causes (i) pressure drop and heat or mass transfer characteristics much different from those occurring either in a straight pipe or in a constant-curvature pipe, and (ii) an early loss of stability of the base steady-state flow. In the present work, four values of the curvature δ = a/c (0.2, 0.3, 0.4 and 0.5) were considered. For each value of …

020209 energyPrandtl number02 engineering and technologySerpentine pipeCondensed Matter PhysicCurvature01 natural sciences010305 fluids & plasmasPhysics::Fluid Dynamicssymbols.namesakeEngineering (all)Computational fluid dynamic0103 physical sciences0202 electrical engineering electronic engineering information engineeringSecondary flowSettore ING-IND/19 - Impianti NucleariPhysicsPressure dropTurbulenceGeneral EngineeringReynolds numberMechanicsCondensed Matter PhysicsSecondary flowTransition to turbulenceClassical mechanicsHeat fluxFlow conditioningsymbolsBifurcation
researchProduct

A 2-D model of electrodialysis stacks including the effects of membrane deformation

2021

Abstract Membrane-based processes have gained a relevant role in many engineering applications. Much effort has been devoted to thoroughly understand the fundamental phenomena behind them. However, membrane deformation has been taken into consideration only recently, although much evidence has shown its impacts in many applications. This work presents a novel 2-D, multi-scale, semi-empirical process model able to predict the behavior and the performance of Electrodialysis (ED) systems in cross-flow configurations in the presence and absence of local membrane deformations. The model exploits the results and the simulation approaches of previous fluid-structure investigations performed by the…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technologyDesalinationSherwood number020401 chemical engineeringGeneral Materials Sciencemembrane deflection0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariIon exchange membraneWater Science and Technologyprofiled membranetransmembrane pressureDesalinationMechanical EngineeringGeneral ChemistryMechanicsEnergy consumptionElectrodialysis021001 nanoscience & nanotechnologyVolumetric flow rateMembrane2 d modelSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologyMembrane deformationDesalination
researchProduct

On natural convection in a single and two zone rectangular enclosure

1992

Abstract Convective heat transfer was investigated numerically for rectangular enclosures both undivided and divided in two zones by a vertical partition, and having opposite isothermal walls at different temperatures. The aspect ratio was varied from 0.1 to 16 and the Rayleigh number from 3.5 ∗ 10 3 to ∗ 10 7 (non-partitioned enclosures) and from 1.0 ∗ 10 5 to 1.6 ∗ 10 8 (partitioned enclosures). The thickness and conductivity of the partition were varied. The end wall thermal boundary conditions were adiabatic or LTP (Linear Temperature Profile). The continuity, momentum and energy equations for a 2-D laminar steady flow were solved under the Boussinesq approximation by using a finite-dif…

Fluid Flow and Transfer ProcessesNatural ConvectionNatural convectionMaterials scienceConvective heat transferEnclosureMechanical EngineeringThermal resistanceThermodynamicsLaminar flowRayleigh numberMechanicsHeat TransferCondensed Matter PhysicsNusselt numberPhysics::Fluid DynamicsLaminar FlowHeat transferBoussinesq approximation (water waves)CFDSettore ING-IND/19 - Impianti NucleariInternational Journal of Heat and Mass Transfer
researchProduct

Investigation of Reverse ElectroDialysis Units by Multi-Physical Modelling

2016

Reverse electrodialysis (RED) is an electrochemical membrane process that converts the salinity gradient energy between two solutions into electric current, by using ion exchange membranes. A novel multi-physical approach for RED modelling is proposed. 2-D simulations of one cell pair with tertiary current distribution (Nernst–Plank equation and local electroneutrality) were performed. Moreover, the Donnan exclusion theory was implemented for simulating double layer phenomena. Transport phenomena and electrochemical behavior were well described. The influence of membrane/channel configuration, dilute concentration and feeds velocity on the process performance was assessed. For a dilute conc…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciSettore ING-IND/06 - FluidodinamicaReverse electrodialysis multi-physics profiled membranes spacersSettore ING-IND/19 - Impianti Nucleari
researchProduct

Pressure drop in woven-spacer-filled channels for reverse electrodialysis: CFD prediction and experimental validation

2015

Reverse electrodialysis (RED) is a promising technology for electric power generation by the chemical potential difference of two salt solutions within a stack equipped by selective ionexchange membranes (salinity gradient energy). Mechanical energy is required for pumping the feed solutions, which can reduce dramatically the net power output. In this work Computational Fluid Dynamics (CFD) simulations of spacer-filled channels for RED were carried out in parallel with an experimental campaign focused on the collection of data for model validation.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWoven spacer Pressure drop Reverse Electrodialysis; CFDWoven spacer Pressure drop Reverse ElectrodialysiCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Temperature distribution analysis in spacer filled channels for membrane distillation

2012

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciChromatographyMaterials scienceDistribution (number theory)Membrane Distillation TLC Temperature distribution Spacer filled channel Heat transferSettore ING-IND/25 - Impianti ChimiciAnalytical chemistryMembrane distillation
researchProduct

An experimental study for the characterization of fluid dynamics and heat transport within the spacer-filled channels of membrane distillation modules

2018

Abstract The thermo-fluid dynamic behavior of spacer-filled channels for membrane distillation was investigated experimentally. Several different geometry were investigated thanks to customized reference spacers manufactured using a 3D printer. In particular, two sets of experiments were conducted: in the first set, cylindrical filaments were orthogonally arranged and the flow attack angle was made to vary from 0o to 90o; in the second set, the flow attack angle was kept symmetrical and the filament angle was made to vary from 30° to 150°. Each spacer was tested for Reynolds numbers between 200 and 900 in the hot channel, while maintaining a constant temperature difference of 13 °C between …

Spacer-filled channelMaterials scienceGeneral Chemical EngineeringMembrane distillation02 engineering and technologyHeat transfer coefficientMembrane distillationProtein filamentsymbols.namesake020401 chemical engineeringFluid dynamicsHeat transfer coefficientGeneral Materials Science0204 chemical engineeringComposite materialDarcy friction coefficientExperimental measurementWater Science and TechnologyPressure dropThermochromic Liquid CrystalMechanical EngineeringReynolds numberGeneral Chemistry021001 nanoscience & nanotechnologyVolumetric flow rateHeat transfersymbols0210 nano-technologyDesalination
researchProduct

Influence of drag and turbulence modelling on CFD predictions of solid liquid suspensions in stirred vessels

2014

Abstract Suspensions of solid particles into liquids within industrial stirred tanks are frequently carried out at an impeller speed lower than the minimum required for complete suspension conditions. This choice allows power savings which usually overcome the drawback of a smaller particle-liquid interfacial area. Despite this attractive economical perspective, only limited attention has been paid so far to the modelling of the partial suspension regime. In the present work two different baffled tanks stirred by Rushton turbines were simulated by employing the Eulerian-Eulerian Multi Fluid Model (MFM) along with either the Sliding Grid algorithm (transient simulations) or the Multiple Refe…

Computational Fluid Dynamics (CFD)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEngineeringWork (thermodynamics)Steady statebusiness.industryTurbulenceSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringMultiphase flowTurbulence modelGeneral ChemistryMechanicsComputational fluid dynamicsImpellerStirred tankDragControl theorySettore ING-IND/06 - FluidodinamicaSolid liquid suspensionMultiphase flowSuspension (vehicle)businessComputational Fluid Dynamics (CFD); Stirred tank; Solid liquid suspension; Drag force; Turbulence model; Multiphase flowDrag forceChemical Engineering Research and Design
researchProduct

CFD Applied to Laminar and Turbulent Combustion Problems: from Laboratory to Industrial Flows

2008

TurbulenceCombustionCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Prediction of Swirling Flow in a Corrugated Channel

1991

Laminar and turbulent flow in a corrugated channel is simulated using HARWELL-FLOW3D. The channel represents a typical cell within a proposed design for the heat-transfer element of a rotary regenerator. Velocity vectors in planes perpendicular and parallel to the axis of a corrugation are visualised using Harwell’s graphics package, OUTPROC. Both programs were mn on Harwell’s Cray 2. The velocity vector plots show clear evidence of swirl, which is thought to be the mechanism responsible for the high rates of heat transfer in this type of heat-exchanger geometry. The swirl strength is shown to be a function of the channel geometry.

PhysicsParticle image velocimetryTurbulenceFlow (psychology)Heat transferRegenerative heat exchangerPerpendicularLaminar flowMechanicsCommunication channel
researchProduct

Influence of Rayleigh Number and End Wall Boundary Conditions on Free Convection Heat Transfer in a Rectangular Enclosure

2000

Natural ConvectionRectangular EnclosureRayleigh numberHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine

2021

Abstract Laboratory scale unbaffled tanks provided with a top cover and a baffled tank both stirred by a Rushton turbine were simulated by carrying out RANS simulations. Three different turbulence models were adopted (k- ω SST, k- e and the SSG Reynolds stress model) to predict the flow field and the relevant performance parameters (power and pumping numbers) of the tank operated from early to fully turbulent conditions. CFD results were compared with literature experimental data and DNS simulation results to validate and properly compare the models. In the range of Reynolds numbers investigated, results showed that, for the unbaffled tank, the SSG model based on Reynolds stresses is a bett…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryTurbulenceGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciReynolds number02 engineering and technologyGeneral ChemistryReynolds stressMechanicsComputational fluid dynamicsLaboratory scale021001 nanoscience & nanotechnologyFlow fieldRushton turbinesymbols.namesake020401 chemical engineeringCFD SSG Stirred tank Turbulence model Unbaffled vesselsymbols0204 chemical engineering0210 nano-technologybusinessReynolds-averaged Navier–Stokes equationsSettore ING-IND/19 - Impianti NucleariMathematics
researchProduct

Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study

2016

Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Filtration and Separation02 engineering and technologyCFD; Concentration polarization; Mass transfer; Reverse electrodialysis (RED); Spacer-filled channel; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationBiochemistryProtein filamentsymbols.namesake020401 chemical engineeringReversed electrodialysisMass transferFluid dynamicsGeneral Materials ScienceMass transfer0204 chemical engineeringPhysical and Theoretical ChemistryConcentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationPressure dropSettore ING-IND/24 - Principi Di Ingegneria ChimicaChromatographyChemistryReverse electrodialysis (RED)Reynolds numberMechanics021001 nanoscience & nanotechnologysymbolsMaterials Science (all)0210 nano-technologyCFD
researchProduct

A Thermochromic Liquid Crystals Image Analysis technique to investigate temperature polarization in spacer-filled channels for Membrane Distillation

2013

The analysis of flow fields and temperature distributions is of paramount importance in the development and optimization of new spacer-filled channel geometries for Membrane Distillation modules. The literature reports only few studies on the experimental characterization of such channels and, to the authors’ knowledge, none of them presents local information concerning the temperature distribution on the membrane surface. In the present work, a non-intrusive experimental technique named TLC-IA-TP is presented: it is based on the use of Thermochromic Liquid Crystals (TLCs) and digital Image Analysis (IA) and it is applied here for the first time to the analysis of Temperature Polarization (…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciConvective heat transferbusiness.industryChemistrySettore ING-IND/25 - Impianti ChimiciMechanical engineeringFiltration and Separation02 engineering and technologyMechanicsComputational fluid dynamics021001 nanoscience & nanotechnologyMembrane distillationPolarization (waves)BiochemistryMembrane technologyMembrane020401 chemical engineeringLiquid crystalMembrane distillation Temperature polarization Thermochromic Liquid Crystals Digital Image Analysis Spacer filled channelGeneral Materials Science0204 chemical engineeringPhysical and Theoretical Chemistry0210 nano-technologybusinessCommunication channel
researchProduct

CFD Investigation of Spacer-Filled Channels for Membrane Distillation

2019

The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ran…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceProcess modelingSpacer-filled channelFiltration and SeparationMembrane distillation02 engineering and technologyHeat transfer coefficientcomputational fluid dynamicsComputational fluid dynamicsMembrane distillationlcsh:Chemical technologyArticlesymbols.namesakeTemperature polarization020401 chemical engineeringComputational fluid dynamicLiquid crystalChemical Engineering (miscellaneous)lcsh:TP1-11850204 chemical engineeringlcsh:Chemical engineeringSettore ING-IND/19 - Impianti NucleariThermochromic liquid crystalsbusiness.industryDesalinationProcess Chemistry and TechnologyReynolds numberlcsh:TP155-156Mechanics021001 nanoscience & nanotechnologyPolarization (waves)6. Clean waterHeat transfersymbols0210 nano-technologybusinessMembranes
researchProduct

Measurements of temperature polarization phenomena in membrane distillation channels by a thermographic technique

2014

In the present work, a recently presented experimental technique, based on the use of thermochromic liquid crystals (TLCs) and digital image processing, has been employed in order to measure the temperature and local heat transfer coefficient distribution on the membrane surface in a MD spacer-filler channel

Temperature polarizationSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciThermochromic liquid crystalFluid dynamicsHeat transferMembrane distillationSettore ING-IND/19 - Impianti Nucleari
researchProduct

A study of turbulent heat transfer in curved pipes by numerical simulation

2013

Abstract Turbulent heat transfer in curved pipes was studied by numerical simulation. Two curvatures δ (pipe radius a/curvature radius c) were considered, 0.1 and 0.3; results were also obtained for a straight pipe (δ = 0) for comparison purposes. A tract of pipe 5 diameters in length was chosen as the computational domain and was discretized by finite volume multiblock-structured grids of ∼5.3 × 106 hexahedral cells. Fully developed conditions were assumed; the friction velocity Reynolds number was 500, corresponding to bulk Reynolds numbers between 12 630 and ∼17 350 according to the curvature, while the Prandtl number was 0.86 (representative of saturated liquid water at 58 bar). Simulat…

Fluid Flow and Transfer ProcessesPhysicsTurbulenceMechanical EngineeringPrandtl numberDirect numerical simulationReynolds numberMechanicsHeat transfer coefficientCondensed Matter PhysicsCurvaturePhysics::Fluid Dynamicssymbols.namesakeClassical mechanicsTurbulent heat transfer curved pipe Direct Numerical Simulation Computational Fluid Dynamics Finite Volume MethodHeat transfersymbolsShear velocitySettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes

2021

Abstract Flow and heat or mass transfer in channels provided with woven spacers made up of mutually orthogonal filaments were studied by Computational Fluid Dynamics. The problem addressed was the combined effect of the parameters that characterize the process: pitch to height ratio P/H (2, 3 and 4), flow attack angle θ (0, 7, 15, 20, 30, 40 and 45°) and Reynolds number Re (from ~1 to ~4000). The Prandtl number was 4.33, representative of water at ~40°C, while the Schmidt number was 600, representative of NaCl solutions. Simulations were performed by the finite volume code Ansys CFX™ 18.1 using very fine grids of ~6 to ~14 million volumes. For Re > ~400, the SST turbulence model was used to…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials science020209 energyPrandtl number02 engineering and technologyComputational fluid dynamicsSherwood numbersymbols.namesakeTemperature polarizationMass transfer0202 electrical engineering electronic engineering information engineeringPressure dropConcentration polarizationWoven spacerSettore ING-IND/19 - Impianti NucleariFluid Flow and Transfer ProcessesTurbulenceMechanical EngineeringSchmidt numberReynolds numberMechanics021001 nanoscience & nanotechnologyCondensed Matter PhysicsNusselt numberSST turbulence modelHeat transfersymbols0210 nano-technology
researchProduct

Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment

2009

Dense solid–liquid off-bottom suspension inside a baffled mechanically stirred tank equipped with a standard Rushton turbine is investigated. Dynamic evolution of the suspension from start-up to steady-state conditions has been determined by both visual experiments and computational fluid dynamics (CFDs). A classical Eulerian–Eulerian multifluid model (MFM) along with the “homogeneous” k–ε turbulence model is adopted to simulate suspension dynamics. In these systems the drag inter-phase force affects both solids suspension and distribution. Therefore, different computational approaches are tested in order to compute this term. Simulation results are compared with images obtained from the re…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEngineeringSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringMixing (process engineering)Start-upComputational fluid dynamicsPhysics::Fluid Dynamicssymbols.namesakeMixingControl theorySuspensionSuspension (vehicle)Steady stateTurbulencebusiness.industryGeneral ChemistryMechanicsDragEuler equationsRushton turbineSolid–liquidDragsymbolsCFDbusinessChemical Engineering Research and Design
researchProduct

Modelling nanoscale fluid dynamics and transport in physiological flows

1996

The concept of nanotechnology is discussed, and its connection with biomedical engineering is elucidated. For the specific field of nanoscale flow and transport problems of physiological relevance, some typical examples are presented, and their interaction is discussed for some classic biomechanical problems like the flow in arteries with blood-wall coupling. Then, existing computational models are presented and classified according to the length scale of interest, with emphasis on particle-fluid problems. Final remarks address the essential unity of biomedical and engineering behaviour and the possible relevance to small-scale industrial research.

EngineeringErythrocytesMacromolecular SubstancesQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringBiophysicsBiological Transport ActiveNanoscale fluid flowMechanical engineeringPhysiological flowsModels BiologicalSettore BIO/09 - FisiologiaBiophysical PhenomenaFluid dynamicsHumansRelevance (information retrieval)Nanoscopic scaleSettore ING-IND/19 - Impianti NucleariComputational modelbusiness.industryCell MembraneIndustrial researchBiophysical PhenomenaBiomechanical PhenomenaCoupling (physics)CartilageNanoscale transportFlow (mathematics)Quantum TheoryThermodynamicsEndothelium VascularRheologyCFDbusinessMedical Engineering & Physics
researchProduct

Experimental and Numerical Simulations of Flow and Heat Transfer in Heat Exchanger Elements Using Liquid Crystal Thermography

2004

Experimental and numerical investigation of heat transfer and fluid flow were conducted for classic heat exchanger elements (flat plate with fin-tubes in-line, staggered and with vortex generators) and corrugated-undulated ducts under transitional and weakly turbulent conditions. The dependence of average heat transfer and pressure drop on Reynolds number and geometrical parameters was investigated. Distributions of local heat transfer coefficient were obtained by using liquid crystal thermography and surface-averaged values were computed. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k-e model under the assumption of fully deve…

Thermal scienceDynamic scraped surface heat exchangerMaterials scienceThermochromic Liquid CrystalCritical heat fluxHeat transfer enhancementThermodynamicsMechanicsHeat transfer coefficientCondensed Matter PhysicsHeat TransferChurchill–Bernstein equationPhysics::Fluid DynamicsThermographyHeat transferPlate Heat ExchangerMicro heat exchangerFluid FlowSettore ING-IND/19 - Impianti Nucleari
researchProduct

Electrodialysis with asymmetrically profiled membranes: Influence of profiles geometry on desalination performance and limiting current phenomena

2021

Abstract Electrodialysis (ED) has recently gained much attention in the wide field of desalination and water treatment. However, energy consumption and capital costs may impair the process competitiveness. In this regard, limiting current density (LCD) and current efficiency (η) are key performance parameters for optimized ED systems. In this work, an experimental campaign was carried out characterizing the performance of ED stacks when adopting asymmetrically profiled membranes. Current–voltage curves were recorded under different operating conditions mimicking the operation of brackish water or seawater desalination units. Results showed that there was a preferable direction of the electr…

Mass transportSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceCurrent utilizationGeneral Chemical Engineering02 engineering and technologyDesalination020401 chemical engineeringCorrugated membraneGeneral Materials Science0204 chemical engineeringComposite materialSettore ING-IND/19 - Impianti NucleariIon exchange membraneWater Science and TechnologyPolarization phenomenaMechanical EngineeringLimiting currentGeneral ChemistryElectrodialysis021001 nanoscience & nanotechnologyMembraneBrineWater treatmentElectric currentCurrent (fluid)0210 nano-technologyDesalination
researchProduct

Investigation of Flow and Heat Transfer in Corrugated Passages – I. Experimental Results

1996

Rotary regeneratorThermochromic Liquid CrystalThermographyPlate heat exchangerHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Numerical simulation of reciprocating turbulent flow in a plane channel

2009

Direct numerical simulation results were obtained for oscillatory flow with zero time mean (reciprocating flow) in a plane channel using a finite volume method, Crank-Nicolson time stepping and central approximation of the advection terms. A pressure gradient varying co-sinusoidally in time was imposed as the forcing term, and its frequency and amplitude were made to vary so as to span a range of regimes from purely laminar to fully turbulent. For the limiting cases of reciprocating laminar flow and steady-state turbulent flow, numerical results were validated against analytical solutions and classic experimental literature data, respectively. For general reciprocating flows, predictions we…

Fluid Flow and Transfer ProcessesPhysicsChézy formulaTurbulenceMechanical EngineeringComputational MechanicsDirect numerical simulationThermodynamicsLaminar sublayerLaminar flowMechanicsReciprocating Flow Channel flow transition to turbulence Direct Numerical SimulationCondensed Matter PhysicsPipe flowOpen-channel flowPhysics::Fluid DynamicsFlow separationMechanics of MaterialsSettore ING-IND/19 - Impianti NucleariPhysics of Fluids
researchProduct

Large-Eddy Simulation: A Critical Survey of Models and Applications

1994

Turbulencebusiness.industryHeat transferEnvironmental scienceCritical surveyComputational Fluid DynamicAerospace engineeringbusinessLarge Eddy SimulationSettore ING-IND/19 - Impianti NucleariLarge eddy simulation
researchProduct

Large-eddy simulations of turbulent flow with heat transfer in simple and complex geometries using Harwell-FLOW3D

1996

Abstract Large-eddy simulation (LES) results are presented and discussed for the turbulent flow with heat transfer in different geometrical configurations, including a plane channel, a channel bearing transverse square ribs on one of the walls, and a crossed-corrugated air heater. They were obtained using the computational fluid dynamics (CFD) code Harwell-FLOW3D (Release 2), finite-volume grids having up to 423 nodes, and the Smagorinsky subgrid model with several variants regarding near-wall damping and wall boundary conditions. The first problem (plane turbulent Poiseuille flow with heat transfer) was mainly used as a benchmark to investigate the influence of numerical methods (pressure-…

business.industryTurbulenceApplied MathematicsPrandtl numberTurbulence modelFluid mechanicsGeometryMechanicsComputational fluid dynamicsHeat TransferHagen–Poiseuille equationLarge Eddy SimulationSubgrid modelPhysics::Fluid Dynamicssymbols.namesakeModelling and SimulationModeling and SimulationHeat transfersymbolsBoundary value problemCFDbusinessSettore ING-IND/19 - Impianti NucleariMathematicsLarge eddy simulationApplied Mathematical Modelling
researchProduct

Influence of the boundary conditions on heat and mass transfer in spacer-filled channels

2017

The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically compl…

HistoryMaterials scienceConvective heat transferFilm temperature02 engineering and technologyMechanicsHeat transfer coefficientElectrodialysis021001 nanoscience & nanotechnologyChurchill–Bernstein equationComputer Science ApplicationsEducationPhysics and Astronomy (all)020401 chemical engineeringMass transferReversed electrodialysisHeat transfer0204 chemical engineering0210 nano-technology
researchProduct

MHD free convection in a liquid-metal filled cubic enclosure. II. Internal heating

2002

The buoyancy-driven magnetohydrodynamic flow in a liquid-metal filled cubic enclosure was investigated by three-dimensional numerical simulation. The enclosure was differentially heated at two opposite vertical walls, all other walls being adiabatic, and a uniform magnetic field was applied orthogonal to the temperature gradient and to the gravity vector. The Rayleigh number was 105 and the Prandtl number was 0.0321 (characteristic of Pb–17Li at 573 K). The Hartmann number was made to vary between 102 and 103 and the electrical conductance of the walls between 0 and ∞. The continuity, momentum and enthalpy transport equations, in conjunction with a Poisson equation for the electric potentia…

Fluid Flow and Transfer ProcessesConvectionPhysicsNatural convectionEnclosureMechanical EngineeringPrandtl numberEnclosureFree ConvectionInternal Heat GenerationThermodynamicsRayleigh numberMechanicsMagnetohydrodynamicCondensed Matter PhysicsHartmann numberPhysics::Fluid Dynamicssymbols.namesakesymbolsMagnetohydrodynamic driveMagnetohydrodynamicsCFDSettore ING-IND/19 - Impianti NucleariInternational Journal of Heat and Mass Transfer
researchProduct

An experimental study of the spray cooling of hot walls – 7. Final results. Quaderno N. 4/2007, Dipartimento di Ingegneria Nucleare, Università degli…

2007

researchProduct

Unsteady Turbulence: Phenomena and Modelling

2010

TurbulenceUnsteady Fluid FlowCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Characterization of membrane-spacer industrial distillers using thermochromic liquid crystals

2011

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciThermochromic Liquid Crystal Membrane-spacer distiller heat transfer thermography
researchProduct

Natural convection heat transfer in a partially—or completely—partitioned vertical rectangular enclosure

1991

Abstract The effect of symmetric partitions protruding centrally from the end walls of a rectangular vertical enclosure on heat transfer rates is investigated numerically. The enclosure has opposite isothermal walls at different temperatures. The Rayleigh number is varied from 10 4 to 10 7 and the aspect ratio from 0.5 to 10. The thickness of the partitions is fixed and equal to one tenth of the width of the enclosure. Their non-dimensional length ( L / H ) is varied from 0 (non-partitioned enclosure) to 0.5 (two separate enclosures). The effect of different thermal boundary conditions at the end walls and at the partitions is included in the investigation.

Fluid Flow and Transfer ProcessesMaterials scienceAspect ratioMechanical EngineeringEnclosureThermal boundary conditionsThermodynamicsNatural convection heat transferMechanicsRayleigh numberCondensed Matter PhysicsIsothermal processPhysics::Fluid DynamicsHeat transferPhysics::Chemical PhysicsInternational Journal of Heat and Mass Transfer
researchProduct

Bifurcations and Histeresis of Low Prandtl Number Free Convection in Square Enclosures with Internal Heat Generation

2003

Natural ConvectionEnclosureBifurcationCFDHisteresisSettore ING-IND/19 - Impianti NucleariInternal Heating
researchProduct

A novel fluid-structure 2D modelling tool for the assessment of membrane deformation effects on electrodialysis units performances

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimiciwater desalinationfluid-structure deformationmembrane deformationSettore ICAR/08 - Scienza Delle Costruzioniflow redistributionelectromembrane process
researchProduct

Flow and Heat Transfer Predictions in Flow Passages of Air Preheaters: Assessment of Alternative Modelling Approaches

1997

Rotary regeneratorHeat transferPlate heat exchangerCFDSettore ING-IND/19 - Impianti NucleariFluid dynamic
researchProduct

Natural Convection in Liquid Metal-Filled Rectangular Enclosures with Volumetric Heating

1998

Low Prandtl number FluidNatural ConvectionRectangular EnclosureCFDLiquid MetalSettore ING-IND/19 - Impianti NucleariInternal Heating
researchProduct

Steady, periodic, quasi-periodic and chaotic flow regimes in toroidal pipes

2012

Incompressible flow in a toroidal pipe was investigated by direct numerical simulation. The curvature a/c (radius of the cross section / radius of the torus) was 0.3 or 0.1 and the bulk Reynolds number ranged between 3500 and 14 700. The study revealed a rich scenario of transition to turbulence. For the higher curvature a/c = 0.3, a supercritical transition from stationary to periodic flow (Hopf bifurcation) was observed at Re=4600. The periodic flow was characterized by a travelling wave which, in the whole periodic Re range, took the form of a varicose modulation of the twin Dean vortex rings, included 8 wavelengths along the axis of the torus, and exhibited instantaneous anti-symmetry a…

Transition to turbulence curved pipe direct numerical simulationSettore ING-IND/19 - Impianti Nucleari
researchProduct

Performance comparison between overlapped and woven spacers for membrane distillation

2017

The sustainable production of freshwater from seawater desalination is receiving increasing attention. Recently, some desalination technologies are taking advantage from the coupling with renewable resources; among them, membrane distillation (MD) is one of the most promising since it can be easily powered by low-grade thermal energy. MD being an emerging technology, efforts are required to optimize geometry and operating conditions of real units in order to reduce the unitary freshwater production cost. In particular, temperature polarization is a well-known detrimental effect for the process driving force; spacers are traditionally used to enhance mixing and make temperature boundary laye…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciMembrane distillation02 engineering and technology010501 environmental sciencesMembrane distillation01 natural sciencesDesalinationlaw.invention020401 chemical engineeringComputational fluid dynamiclaw0204 chemical engineeringDistillationSettore ING-IND/19 - Impianti Nucleari0105 earth and related environmental sciencesThermochromic liquid crystalsMembrane distillation; Computational fluid dynamics; Spacer-filled channels; Thermochromic liquid crystalsPetroleum engineeringTurbulenceMembraneSettore ING-IND/06 - FluidodinamicaSeawaterWater treatmentRenewable resource
researchProduct

Termoidraulica del sodio - elementi teorici e sperimentali

1982

SodiumThermal HydraulicFast Breeder ReactorLiquid MetalHeat TransferFluid FlowNuclear Reactor CoolantSettore ING-IND/19 - Impianti Nucleari
researchProduct

Direct Numerical Simulation of Pulsatile Turbulent Channel Flow

2008

TurbulenceDirect Numerical SimulationDNSPlane ChannelPulsatile FlowReciprocating FlowOscillatory FlowCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Analisi numerica degli effetti della deformazione di membrane a scambio ionico sulla distribuzione dei fluidi in canali di Elettrodialisi

2019

L’elettrodialisi (ED) è una promettente tecnologia a membrana utilizzata in diversi campi, ad esempio nella dissalazione delle acque e nell’industria alimentare. L’ED usa un potenziale elettrico per indurre una migrazione selettiva di cationi ed anioni da una soluzione elettrolitica ad un’altra, sfruttando membrane a scambio ionico. Membrane anioniche e cationiche sono alternativamente collocate all’interno di una unità ED. A queste sono solitamente interposti spaziatori che prevengono il contatto tra le membrane e delineano i canali in cui scorrono le soluzioni. L’utilizzo di membrane profilate consente di costruire unità prive di tradizionali spaziatori a rete non conduttivi. In genere, l…

modelloSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicideformazionesimulazione numericainterazione fluido-strutturaSettore ICAR/08 - Scienza Delle CostruzioniElettrodialisiSettore ING-IND/19 - Impianti Nucleari
researchProduct

Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches

1998

Abstract Numerical simulations of the flow field in baffled mixing tanks, based on three alternative methods, are presented and discussed. In the first method, the impeller is not explicitly simulated, and its effects are modelled by imposing suitable, empirically derived, boundary conditions to the external flow. In the second method, the whole vessel volume is divided into two concentric, partially overlapping, regions. In the inner region, containing the impeller, the flow field is simulated in the rotating reference frame of the latter, while in the outer region simulations are conducted in the reference frame of the laboratory. Information is iteratively exchanged between the two regio…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciEngineeringComputer simulationbusiness.industryTurbulenceSettore ING-IND/25 - Impianti ChimiciApplied MathematicsGeneral Chemical EngineeringFlow (psychology)Turbulence modelGeneral ChemistryMechanicsComputational fluid dynamicsRotating reference frameIndustrial and Manufacturing EngineeringExternal flowFree surface flowRushton turbineImpellerStirred tankControl theoryCFDbusinessSettore ING-IND/19 - Impianti NucleariReference frameChemical Engineering Science
researchProduct

Local Effects of Longitudinal Heat Conduction in Plate Heat Exchangers

2007

Abstract In a plate heat exchanger, heat transfer from the hot to the cold fluid is a multi-dimensional conjugate problem, in which longitudinal heat conduction (LHC) along the dividing walls often plays some role and can not be neglected. Large-scale , or end-to-end, LHC is always detrimental to the exchanger’s effectiveness. On the contrary, if significant non-uniformities exist in the distribution of either convective heat transfer coefficient, small-scale , or local, LHC may actually enhance the exchanger’s performance by improving the thermal coupling between high heat transfer spots located on the opposite sides of the dividing wall.

Fluid Flow and Transfer ProcessesMaterials scienceConvective heat transferMechanical Engineeringlongitudinal heat conductionPlate heat exchangerThermodynamicsconjugate heat transferHeat transfer coefficientMechanicsHeat sinkCondensed Matter Physicsplate heat exchangerHeat transferHeat spreaderMicro heat exchangerPlate fin heat exchangerSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD modelling of thin channels for direct and reverse electrodialysis

2012

RED CFDSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti Chimici
researchProduct

Fully Developed Mixed MHD Convection in a Vertical Square Duct

2008

researchProduct

Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer

2019

In electro-membrane processes, a pressure difference may arise between solutions flowing in alternate channels. This transmembrane pressure (TMP) causes a deformation of the membranes and of the fluid compartments. This, in turn, affects pressure losses and mass transfer rates with respect to undeformed conditions and may result in uneven flow rate and mass flux distributions. These phenomena were analyzed here for round pillar-type profiled membranes by integrated mechanical and fluid dynamics simulations. The analysis involved three steps: (1) A conservatively large value of TMP was imposed, and mechanical simulations were performed to identify the geometry with the minimum pillar density…

ion exchange membraneMass fluxSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Computer Sciencereverse electrodialysisFlow (psychology)fluid-structure interaction02 engineering and technologyDeformation (meteorology)Computational fluid dynamicsElectrodialysilcsh:QA75.5-76.95Theoretical Computer Sciencestructural mechanics020401 chemical engineeringMass transferReverse electrodialysimass transferFluid dynamicselectrodialysis0204 chemical engineeringSettore ING-IND/19 - Impianti Nuclearipressure dropprofiled membranebusiness.industryApplied MathematicsMechanics021001 nanoscience & nanotechnologyVolumetric flow rateMembraneModeling and Simulationlcsh:Electronic computers. Computer scienceSettore ICAR/08 - Scienza Delle CostruzioniCFD0210 nano-technologybusinessComputation
researchProduct

Analysis of particles size distributions in Mg(OH)2 precipitation from highly concentrated MgCl2 solutions

2022

Magnesium is a raw material of great importance, which attracted increasing interest in the last years. A promising route is to recover magnesium in the form of Magnesium Hydroxide via precipitation from highly concentrated Mg2+ resources, e.g. industrial or natural brines and bitterns. Several production methods and characterization procedures have been presented in the literature reporting a broad variety of Mg(OH)2 particle sizes. In the present work, a detailed experimental investigation is aiming to shed light on the characteristics of produced Mg(OH)2 particles and their dependence upon the reacting conditions. To this purpose, two T-shaped mixers were employed to tune and control the…

bepress|Engineering|Chemical Engineering|Other Chemical Engineeringbepress|EngineeringReactive crystallizationGeneral Chemical Engineeringbepress|Engineering|Chemical Engineering02 engineering and technologyengrXiv|Engineering|Chemical EngineeringPrecipitationMineral recovery010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnesium hydroxide; Nanoparticles; Mixing; Precipitation; Reactive crystallization; Mineral recoveryMagnesium hydroxideengrXiv|EngineeringMixingNanoparticlesengrXiv|Engineering|Chemical Engineering|Other Chemical Engineering0210 nano-technology
researchProduct

Low-Prandtl Number Natural Convection in Volumetrically Heated Rectangular Enclosures - I. Slender Cavity, AR=4

2000

Natural ConvectionEnclosureInternal Heat GenerationCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Measurement of Local Hot-Wall Heat Transfer in High-Rayleigh Number Free Convection Flow

1999

Natural ConvectionRectangular EnclosureHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Predictive Study of Heat Transfer to an Incompressible Fluid Past a Downstream-Facing Step in Turbulent Flow

1988

Turbulence modelCFDHeat TransferFluid FlowSettore ING-IND/19 - Impianti NucleariBackward Facing Step
researchProduct

On the influence of curvature and torsion on turbulence in helically coiled pipes

2014

Turbulent flow and heat transfer in helically coiled pipes at Retau=400 was investigated by DNS using finite volume grids with up to 2.36×10E7 nodes. Two curvatures (0.1 and 0.3) and two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and thermally. The central discretization scheme was adopted for diffusion and advection terms, and the second order backward Euler scheme for time advancement. The grid spacing in wall units was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which were used to compute statistics. The results s…

Turbulence helically coiled pipes curvature torsionSettore ING-IND/19 - Impianti Nucleari
researchProduct

Quest'acqua così invadente

1991

Acqua
researchProduct

Modelling Turbulent Inter-Phase Drag in Mechanically Stirred Solid-Liquid Suspensions

2012

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceTurbulenceDragSettore ING-IND/25 - Impianti ChimiciPhase (matter)Settore ING-IND/06 - FluidodinamicaMixing Solid-liquid Suspension Stirred Tank CFD Drag TurbulenceMechanicsSolid liquidProceeding of THMT-12. Proceedings of the Seventh International Symposium On Turbulence, Heat and Mass Transfer Palermo, Italy, 24-27 September, 2012
researchProduct

Nanoscale Fluid Dynamics in Physiological Processes: A Review Study

1999

physiological flowsnanoscaleFluid dynamic
researchProduct

Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications

2018

Abstract The need for unconventional sources of fresh water is pushing a fast development of desalination technologies, which proved to be able to face and solve the problem of water scarcity in many dry areas of the planet. Membrane desalination technologies are nowadays leading the market and, among these, electrodialysis (ED) plays an important role, especially for brackish water desalination, thanks to its robustness, extreme flexibility and broad range of applications. In fact, many ED-related processes have been presented, based on the use of Ion Exchange Membranes (IEMs), which are significantly boosting the development of ED-related technologies. This paper presents the fundamentals…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProcess modelingComputer scienceProcess (engineering)General Chemical Engineering02 engineering and technologyElectrodialysi7. Clean energyDesalinationWater scarcityWater desalination020401 chemical engineeringGeneral Materials Science0204 chemical engineeringRobustness (economics)Concentration polarizationSettore ING-IND/19 - Impianti NucleariIon exchange membraneWater Science and TechnologyElectrodialysis; Water desalination; Ion exchange membrane; Concentration polarization; EnergyFlexibility (engineering)EnergyMechanical EngineeringGeneral ChemistryElectrodialysis021001 nanoscience & nanotechnology6. Clean waterWater resources13. Climate actionBiochemical engineering0210 nano-technology
researchProduct

Tomographic Particle Image Velocimetry and Thermography in Rayleigh-Bènard Convection Using Suspended Thermochromic Liquid Crystals and Digital Image…

2003

Raileigh-Bènard ConvectionThermochromic Liquid CrystalDigital Image ProcessingSettore ING-IND/19 - Impianti Nucleari
researchProduct

Numerical prediction of turbulent flow and heat transfer in helically coiled pipes

2010

Abstract Computational results were obtained for turbulent flow and heat transfer in curved pipes, representative of helically coiled heat exchangers. Following a grid refinement study, grid independent predictions from alternative turbulence models ( k – ɛ , SST k – ω and RSM– ω ) were compared with DNS results and experimental pressure drop and heat transfer data. Using the SST k – ω and RSM– ω models, pressure drop results were in excellent agreement with literature data and the Ito correlation. For heat transfer, the literature is not comparably complete or accurate, but a satisfactory agreement was obtained in the range of available data. Unsatisfactory results, both for pressure drop …

Pressure dropMaterials scienceTurbulenceGeneral EngineeringTurbulence modelingThermodynamicsReynolds stressCondensed Matter PhysicsChurchill–Bernstein equationNusselt numberHeat transferHeat exchangerhelically coiled tubes curved tubes pressure drop heat transfer turbulent flow turbulence modelsSettore ING-IND/19 - Impianti NucleariInternational Journal of Thermal Sciences
researchProduct

CFD simulations of dense sloid-liquid suspensions in baffled stirred tanks: Prediction of suspension curves

2011

Mixing of solid particles into liquids within contactors mechanically agitated by stirrers is a topic of primary importance for several industrial applications. A great research effort has been devoted to the assessment of the minimum impeller speed (Njs) able to guarantee the suspension of all particles. Conversely, only little attention has been paid so far to the evaluation of the amount of solid particles that are suspended at impeller speeds lower than Njs. In some cases the loss in available interfacial area between particles and liquid could be reasonably counterbalanced by a decreased mechanical power, making it of interest to evaluate the percentage of suspended solids at different…

EngineeringDrag coefficientEulerian-Eulerian Solid-liquid suspension Partial suspension Drag force Stirred tank Suspension curve Two.phase flow Turbulence modelTurbulencebusiness.industryGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Mechanical engineeringGeneral ChemistryMechanicsComputational fluid dynamicsIndustrial and Manufacturing EngineeringImpellerDragEnvironmental ChemistryTwo-phase flowbusinessSuspension (vehicle)
researchProduct

Dense-Cloud Atmospheric Dispersion in Complex-Terrain Sites

2003

Atmospheric DispersionPollutant DispersionSettore ING-IND/25 - Impianti ChimiciDense GaCFDSettore ING-IND/19 - Impianti Nucleari
researchProduct

Fully Developed Mixed Magnetohydrodynamic Convection in a Vertical Square Duct

2008

The fully developed flow of an electrically conducting, internally heated fluid in a vertical square duct under the influence of buoyancy and magnetohydrodynamic forces is studied. The flow being parallel, the governing equations are two-dimensional and linear; an analytical solution exists for temperature, while velocity and electric potential are computed by a finite difference technique under different electric boundary conditions, forced to natural convection intensity ratios and values of the magnetic induction. Limiting values of pressure gradient and mean velocity are determined for the flow to be unidirectional throughout the duct's section; recirculation occurs for intermediate val…

PhysicsConvectionNumerical AnalysisNatural convectionBuoyancyMechanicsengineering.materialCondensed Matter PhysicsPhysics::Fluid DynamicsClassical mechanicsCombined forced and natural convectionFlow conditioningengineeringDuct (flow)Magnetohydrodynamic drivePressure gradientNumerical Heat Transfer, Part A: Applications
researchProduct

On the Influence of Initial Conditions on Rayleigh-Bènard Convection

2005

researchProduct

Entropy, Benford’s first digit law, and the distribution of everything

2010

Shannon entropy probability density function size distribution Benford lawSettore ING-IND/19 - Impianti Nucleari
researchProduct