6533b7d6fe1ef96bd1265d02

RESEARCH PRODUCT

CFD prediction of concentration polarization phenomena in spacer-filled channels for Reverse Electrodialysis

Andrea CipollinaAlessandro TamburiniLuigi GurreriMichele CiofaloGdm Micale

subject

Pressure dropSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciChemistryAnalytical chemistryFiltration and Separation02 engineering and technologyElectrodialysis021001 nanoscience & nanotechnology7. Clean energyBiochemistry6. Clean waterVolumetric flow rate020401 chemical engineeringChemical physicsReversed electrodialysisOsmotic powerGeneral Materials Science0204 chemical engineeringPhysical and Theoretical Chemistry0210 nano-technologyPolarization (electrochemistry)Current densitySettore ING-IND/19 - Impianti NucleariConcentration polarizationCFD Reverse Electrodialysis concentration polarization spacer-filled channel mixing promoter

description

Abstract Salinity Gradient Power generation through Reverse Electrodialysis (SGP-RE) is a promising technology to convert the chemical potential difference of a salinity gradient into electric energy. In SGP-RE systems, as in most membrane processes, concentration polarization phenomena may affect the theoretical driving force and thus the performance of the process. Operating conditions, including the feed solution flow rate and concentration and the channels׳ geometrical configuration, may greatly influence both the polarization effect and the pumping energy consumption. The present work uses CFD to investigate the dependence of concentration polarization and pressure drop on flow rate, feeds concentration, current density and spacer features. Concentration polarization effects were found to be significant at low feed solution concentration (river water), but only secondary at higher concentrations (seawater and brine), thus suggesting that different optimization strategies should be employed depending on the feeds concentration. The features that a spacer-filled channel should possess for high efficiency and high current density SGP-RE applications were identified.

10.1016/j.memsci.2014.05.058http://hdl.handle.net/10447/96960