0000000000018341

AUTHOR

Yingqi Zhang

0000-0001-7338-949x

Comments on “Finite-Time $H_{\infty }$ Fuzzy Control of Nonlinear Jump Systems With Time Delays Via Dynamic Observer-Based State Feedback”

This paper investigates a defect appearing in “Finite-time H∞ fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback,” which the observer-based finite-time H∞ controller via dynamic observer-based state feedback could not ensuring stochastic finite-time boundedness, and satisfying a prescribed level of H∞ disturbance attenuation for the resulting closed-loop error fuzzy Markov jump systems. The corrected results are presented, and the improved optimal algorithms and new simulation results are also provided in this paper.

research product

Robust finite-time fuzzy H∞ control for uncertain time-delay systems with stochastic jumps

Abstract This paper investigates the problem of robust finite-time H ∞ control for a class of uncertain discrete-time Markovian jump nonlinear systems with time-delays represented by Takagi–Sugeno (T–S) model. Initially, the concepts of stochastic finite-time boundedness and stochastic finite-time H ∞ stabilization are presented. Then, by using stochastic Lyapunov–Krasovskii functional approach, sufficient conditions are derived such that the resulting close-loop system is stochastically finite-time bounded and satisfies a prescribed H ∞ disturbance attenuation level in a given finite-time interval. Furthermore, sufficient criteria on stochastic finite-time H ∞ stabilization using a fuzzy s…

research product

Finite-time boundedness for uncertain discrete neural networks with time-delays and Markovian jumps

This paper is concerned with stochastic finite-time boundedness analysis for a class of uncertain discrete-time neural networks with Markovian jump parameters and time-delays. The concepts of stochastic finite-time stability and stochastic finite-time boundedness are first given for neural networks. Then, applying the Lyapunov approach and the linear matrix inequality technique, sufficient criteria on stochastic finite-time boundedness are provided for the class of nominal or uncertain discrete-time neural networks with Markovian jump parameters and time-delays. It is shown that the derived conditions are characterized in terms of the solution to these linear matrix inequalities. Finally, n…

research product

Finite-time stabilization for discrete fuzzy jump nonlinear systems with time delays

This paper is concerned with the problem of finite-time H∞ control for a class of discrete-time Markovian jump nonlinear systems with time delays represented by Takagi-Sugeno (T-S) model. First, by using fuzzy stochastic Lyapunov-Krasovskii functional approach, sufficient conditions are derived such that the resulting close-loop system is stochastic finite-time bounded and satisfies a prescribed H∞ disturbance attenuation level in a given finite-time interval. Second, sufficient criteria on stochastic finite-time H∞ stabilization via fuzzy state feedback are provided, and the fuzzy state feedback controller is designed by solving an optimization problem in terms of linear matrix inequalitie…

research product

Observer-based finite-time fuzzy H∞ control for discrete-time systems with stochastic jumps and time-delays

This paper is concerned with the problem of observer-based finite-time H ∞ control for a family of discrete-time Markovian jump nonlinear systems with time-delays represented by Takagi-Sugeno (T-S) model. The main contribution of this paper is to design an observer-based finite-time H ∞ controller such that the resulting closed-loop system is stochastic finite-time bounded and satisfies a prescribed H ∞ disturbance attenuation level over the given finite-time interval. Sufficient criteria on stochastic finite-time H ∞ stabilization via observer-based fuzzy state feedback are presented for the solvability of the problem, which can be tackled by a feasibility problem in terms of linear matrix…

research product

Observer-based finite-time control for discrete fuzzy jump nonlinear systems with time delays

This paper investigates the problem of observer-based finite-time H∞ control for a family of discrete jump nonlinear systems with time delays represented by Takagi-Sugeno (T-S) model. The main contribution of this paper is to design an observer-based finite-time H∞ controller such that the resulting closed-loop system is stochastic finite-time bounded and satisfies a prescribed H∞ disturbance attenuation level over the given finite-time interval. Sufficient criteria on stochastic finite-time H∞ stabilization via observer-based fuzzy state feedback are provided for the solvability of the problem, which can be tackled by a feasibility problem in terms of linear matrix inequalities. A simulati…

research product