0000000000018412

AUTHOR

Mikhail Kozlov

showing 11 related works from this author

Fast apparent oscillations of fundamental constants

2019

Precision spectroscopy of atoms and molecules allows one to search for and to put stringent limits on the variation of fundamental constants. These experiments are typically interpreted in terms of variations of the fine structure constant $\alpha$ and the electron to proton mass ratio $\mu=m_e/m_p$. Atomic spectroscopy is usually less sensitive to other fundamental constants, unless the hyperfine structure of atomic levels is studied. However, the number of possible dimensionless constants increases when we allow for fast variations of the constants, where "fast" is determined by the time scale of the response of the studied species or experimental apparatus used. In this case, the relevan…

Scale (ratio)Atomic Physics (physics.atom-ph)530 PhysicsFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyAtomic spectroscopyElectron53001 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsHyperfine structurePhysicsHigh Energy Physics::PhenomenologyAtoms in moleculesFine-structure constantSense (electronics)021001 nanoscience & nanotechnology530 PhysikHigh Energy Physics - PhenomenologyAtomic physics0210 nano-technologyDimensionless quantity
researchProduct

Prediction of quantum many-body chaos in protactinium atom

2017

Energy level spectrum of protactinium atom (Pa, Z=91) is simulated with a CI calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity $J^\pi$ exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and predict probabilities of different processes in chaotic systems.

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsChaoticFOS: Physical sciencesParity (physics)Configuration interaction01 natural sciencesQuantum chaosPhysics - Atomic PhysicsTotal angular momentum quantum numberQuantum mechanics0103 physical sciencesStatistical theory010306 general physicsQuantumEigenvalues and eigenvectors
researchProduct

Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy.

2018

Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard-model particles. Here we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

PhysicsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciencesPhysics - Atomic Physics3. Good healthStandard ModelNuclear physicsAntiprotonAntimatter0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysics::Atomic Physics010306 general physicsSpin (physics)Antiprotonic heliumHyperfine structureBosonPhysical review letters
researchProduct

Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy

2017

The weak interaction does not conserve parity and therefore induces energy shifts in chiral enantiomers that should in principle be detectable in molecular spectra. Unfortunately, the magnitude of the expected shifts are small and in spectra of a mixture of enantiomers, the energy shifts are not resolvable. We propose a nuclear magnetic resonance (NMR) experiment in which we titrate the chirality (enantiomeric excess) of a solvent and measure the diasteriomeric splitting in the spectra of a chiral solute in order to search for an anomalous offset due to parity nonconservation (PNC). We present a proof-of-principle experiment in which we search for PNC in the \textsuperscript{13}C resonances…

Chemical Physics (physics.chem-ph)PhysicsGeneral PhysicsChemical shiftphysics.chem-phFOS: Physical sciencesParity (physics)Nuclear magnetic resonance spectroscopyWeak interaction010402 general chemistry01 natural sciencesSpectral lineMathematical Sciences0104 chemical sciences3. Good healthPhysics - Chemical Physics0103 physical sciencesPhysical SciencesChemical SciencesPhysics::Atomic PhysicsAtomic physicsEnantiomer010306 general physicsEnantiomeric excessChirality (chemistry)
researchProduct

Dependence of atomic parity-violation effects on neutron skins and new physics

2019

We estimate the relative contribution of nuclear structure and new physics couplings to the parity non-conserving spin-independent effects in atomic systems, for both single isotopes and isotopic ratios. General expressions are presented to assess the sensitivity of isotopic ratios to neutron skins and to couplings beyond standard model at tree level. The specific coefficients for these contributions are calculated assuming Fermi distribution for proton and neutron nuclear densities for isotopes of Cs, Ba, Sm, Dy, Yb, Pb, Fr, and Ra. The present work aims to provide a guide to the choice of the best isotopes and pairs of isotopes for conducting atomic PNC measurements.

PhysicsIsotopeAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsPhysics beyond the Standard ModelNuclear TheoryNuclear structureFOS: Physical sciencesParity (physics)7. Clean energy01 natural sciencesPhysics - Atomic PhysicsNuclear physicssymbols.namesake0103 physical sciencessymbolsFermi–Dirac statisticsNeutronPhysics::Atomic Physics010306 general physicsNuclear Experiment
researchProduct

Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium

2020

Two lowest-energy odd-parity atomic levels of actinium, 7s27pP21/2o, 7s27pP23/2o, were observed via two-step resonant laser-ionization spectroscopy and their respective energies were measured to be 7477.36(4) and 12 276.59(2) cm-1. The lifetimes of these states were determined as 668(11) and 255(7) ns, respectively. In addition, we observed the effect of the hyperfine structure on the line for the transition to P23/2o. These properties were calculated using a hybrid approach that combines configuration interaction and coupled-cluster methods, in good agreement with the experiment. The data are of relevance for understanding the complex atomic spectra of actinides and for developing efficien…

FUNDAMENTAL PHYSICSGeneral Physics and Astronomychemistry.chemical_elementHYPERFINE STRUCTURE01 natural sciences7. Clean energyATOMIC SPECTROSCOPYLASER IONIZATION SPECTROSCOPYATOMSCOMPLEX ATOMIC SPECTRALaser coolingIonization0103 physical sciences010306 general physicsSpectroscopyNUMERICAL METHODSHyperfine structurePhysicsHYBRID APPROACHATOM LASERSActinideConfiguration interactionCOUPLED-CLUSTER METHODSACTINIUMMEDICAL ISOTOPE PRODUCTIONActiniumchemistryLASER COOLINGIONIZATIONProduction (computer science)Atomic physicsCONFIGURATION INTERACTIONS
researchProduct

Revisiting spin-dependent forces mediated by new bosons : potentials in the coordinate-space representation for macroscopic- and atomic-scale experim…

2019

The exchange of spin-0 or spin-1 bosons between fermions or spin-polarised macroscopic objects gives rise to various spin-dependent potentials. We derive the coordinate-space non-relativistic potentials induced by the exchange of such bosons, including contact terms that can play an important role in atomic-scale phenomena, and correct for errors and omissions in the literature. We summarise the properties of the potentials and their relevance for various types of experiments. These potentials underpin the interpretation of experiments that search for new bosons, including spectroscopy, torsion-pendulum measurements, magnetometry, parity nonconservation and electric dipole moment experiment…

PhysicsAtomic Physics (physics.atom-ph)Physics beyond the Standard ModelFOS: Physical sciencesParity (physics)Fermion01 natural sciencesAtomic units3. Good health010305 fluids & plasmasPhysics - Atomic PhysicsElectric dipole momentTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCP violationCoordinate space010306 general physicsBoson
researchProduct

Molecular parity nonconservation in nuclear spin couplings

2017

The weak interaction does not conserve parity, which is apparent in many nuclear and atomic phenomena. However, thus far, parity nonconservation has not been observed in molecules. Here we consider nuclear-spin-dependent parity nonconserving contributions to the molecular Hamiltonian. These contributions give rise to a parity nonconserving indirect nuclear spin-spin coupling which can be distinguished from parity conserving interactions in molecules of appropriate symmetry, including diatomic molecules. We estimate the magnitude of the coupling, taking into account relativistic corrections. Finally, we propose and simulate an experiment to detect the parity nonconserving coupling using liqu…

PhysicsChemical Physics (physics.chem-ph)Antisymmetric relationAtomic Physics (physics.atom-ph)FOS: Physical sciencesParity (physics)010402 general chemistry01 natural sciences5300104 chemical sciencesPhysics - Atomic PhysicsQuantum mechanicsPhysics - Chemical Physics0103 physical sciencesddc:530Physics::Atomic Physics010306 general physics
researchProduct

High magnetic fields for fundamental physics

2018

Various fundamental-physics experiments such as measurement of the birefringence of the vacuum, searches for ultralight dark matter (e.g., axions), and precision spectroscopy of complex systems (including exotic atoms containing antimatter constituents) are enabled by high-field magnets. We give an overview of current and future experiments and discuss the state-of-the-art DC- and pulsed-magnet technologies and prospects for future developments.

Astrophysics and AstronomyPhysics - Instrumentation and Detectorsmagnet: designmagnetic field: highAtomic Physics (physics.atom-ph)AxionsDark matterComplex systemOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesphysics.atom-phNOPhysics - Atomic PhysicsNuclear physicsPhysics and Astronomy (all)Neutrino mass0103 physical sciencesDark matter[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Axions; Dark matter; High-field magnets; Neutrino mass; Spectroscopy; Vacuum birefringence; Physics and Astronomy (all)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Axionphysics.ins-detSpectroscopyactivity reportExotic atomPhysicsVacuum birefringence010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Polarization (waves)magnet: technology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthMagnetic fieldHigh-field magnetsAntimatterMagnetAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Probing fast oscillating scalar dark matter with atoms and molecules

2021

Light scalar Dark Matter with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomic observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies $<$ 1 Hz). In a recent experiment \mbox{[Phys. Rev. Lett. 123, 141102 (2019)]} called WReSL (Weekend Relaxion-Search Laboratory), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particu…

PhysicsPhysics and Astronomy (miscellaneous)Atomic Physics (physics.atom-ph)010308 nuclear & particles physicsMaterials Science (miscellaneous)Dark matterAtoms in moleculesScalar (mathematics)FOS: Physical sciencesObservableAtomic spectroscopyElectron53001 natural sciencesAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciencesModulation (music)ddc:530Electrical and Electronic Engineering010306 general physicsConstant (mathematics)Quantum Science and Technology
researchProduct

Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy

2017

Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles) with masses ${10}^{\ensuremath{-}2}\ensuremath{\lesssim}m\ensuremath{\lesssim}{10}^{4}\mathrm{eV}$ are improved by a factor of $\ensuremath{\sim}100$. The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.

General PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesElectron01 natural sciencesphysics.atom-phMathematical SciencesPhysics - Atomic PhysicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin (physics)SpectroscopyAxionBosonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phPseudoscalarHigh Energy Physics - PhenomenologyExcited statePhysical SciencesChemical SciencesAtomic physicsEnergy (signal processing)
researchProduct