0000000000018454

AUTHOR

Plamen Koshlukov

showing 8 related works from this author

On the identities of the Grassmann algebras in characteristicp>0

2001

In this note we exhibit bases of the polynomial identities satisfied by the Grassmann algebras over a field of positive characteristic. This allows us to answer the following question of Kemer: Does the infinite dimensional Grassmann algebra with 1, over an infinite fieldK of characteristic 3, satisfy all identities of the algebraM 2(K) of all 2×2 matrices overK? We give a negative answer to this question. Further, we show that certain finite dimensional Grassmann algebras do give a positive answer to Kemer's question. All this allows us to obtain some information about the identities satisfied by the algebraM 2(K) over an infinite fieldK of positive odd characteristic, and to conjecture ba…

CombinatoricsNegative - answerPolynomialGrassmann numberConjectureGeneral MathematicsFree algebraAssociative algebraField (mathematics)Exterior algebraMathematicsIsrael Journal of Mathematics
researchProduct

Trace Identities on Diagonal Matrix Algebras

2020

Let Dn be the algebra of n × n diagonal matrices. On such an algebra it is possible to define very many trace functions. The purpose of this paper is to present several results concerning trace identities satisfied by this kind of algebras.

Pure mathematicsTrace (linear algebra)Diagonal matricesCodimensions; Diagonal matrices; Polynomial identities; TracesDiagonal matriceCodimensionsPolynomial identitiesSettore MAT/02 - AlgebraPolynomial identitieCodimensionTracesDiagonal matrixAlgebra over a fieldMathematicsTrace
researchProduct

Polynomial identities for the Jordan algebra of upper triangular matrices of order 2

2012

Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…

Pure mathematicsPolynomialAlgebra and Number TheoryJordan algebraTriangular matrixJordan polynomial identities graded upper triangularCyclic groupField (mathematics)CodimensionBasis (universal algebra)CombinatoricsSettore MAT/02 - AlgebraOrder (group theory)Mathematics
researchProduct

GRADED IDENTITIES FOR THE ALGEBRA OF n×n UPPER TRIANGULAR MATRICES OVER AN INFINITE FIELD

2003

We consider the algebra Un(K) of n×n upper triangular matrices over an infinite field K equipped with its usual ℤn-grading. We describe a basis of the ideal of the graded polynomial identities for this algebra.

PolynomialHilbert series and Hilbert polynomialMathematics::Commutative AlgebraGeneral MathematicsGraded ringTriangular matrixBasis (universal algebra)Graded Lie algebraFiltered algebraAlgebrasymbols.namesakeDifferential graded algebrasymbolsMathematicsInternational Journal of Algebra and Computation
researchProduct

Gradings on the algebra of upper triangular matrices and their graded identities

2004

Abstract Let K be an infinite field and let UT n ( K ) denote the algebra of n × n upper triangular matrices over  K . We describe all elementary gradings on this algebra. Further we describe the generators of the ideals of graded polynomial identities of UT n ( K ) and we produce linear bases of the corresponding relatively free graded algebras. We prove that one can distinguish the elementary gradings by their graded identities. We describe bases of the graded polynomial identities in several “typical” cases. Although in these cases we consider elementary gradings by cyclic groups, the same methods serve for elementary gradings by any finite group.

Finite groupPolynomialPure mathematicsAlgebra and Number TheoryMathematics::Commutative AlgebraGraded identitiesMathematics::Rings and AlgebrasTriangular matrixGraded ringCyclic groupElementary gradingGraded Lie algebraUpper triangular matricesAlgebraDifferential graded algebraAlgebra over a fieldMathematics
researchProduct

Trace identities and almost polynomial growth

2021

In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic 0. We consider two commutative matrix algebras: $D_2$, the algebra of $2\times 2$ diagonal matrices and $C_2$, the algebra of $2 \times 2$ matrices generated by $e_{11}+e_{22}$ and $e_{12}$. We describe all possible traces on these algebras and we study the corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial or exponential.

PolynomialPure mathematicsTrace (linear algebra)Trace algebrasField (mathematics)01 natural sciencesPolynomial identitiesMatrix (mathematics)16R10 16R30 16R50Polynomial identitieCodimensions growth Polynomial identities Trace algebras0103 physical sciencesDiagonal matrixFOS: Mathematics0101 mathematicsCommutative propertyMathematicsCodimensions growth; Polynomial identities; Trace algebrasAlgebra and Number TheoryCodimensions growth010102 general mathematicsTrace algebraMathematics - Rings and AlgebrasExponential functionSettore MAT/02 - AlgebraRings and Algebras (math.RA)010307 mathematical physicsVariety (universal algebra)
researchProduct

Graded algebras with polynomial growth of their codimensions

2015

Abstract Let A be an algebra over a field of characteristic 0 and assume A is graded by a finite group G . We study combinatorial and asymptotic properties of the G -graded polynomial identities of A provided A is of polynomial growth of the sequence of its graded codimensions. Roughly speaking this means that the ideal of graded identities is “very large”. We relate the polynomial growth of the codimensions to the module structure of the multilinear elements in the relatively free G -graded algebra in the variety generated by A . We describe the irreducible modules that can appear in the decomposition, we show that their multiplicities are eventually constant depending on the shape obtaine…

Discrete mathematicsHilbert series and Hilbert polynomialPure mathematicsPolynomialMultilinear mapAlgebra and Number TheoryMathematics::Commutative AlgebraGraded ringGraded codimensionsymbols.namesakeSettore MAT/02 - AlgebraPI exponentDifferential graded algebrasymbolsMultipartitionGraded identitieVariety (universal algebra)Algebra over a fieldCodimension growthMathematics
researchProduct

Matrix algebras with degenerate traces and trace identities

2022

In this paper we study matrix algebras with a degenerate trace in the framework of the theory of polynomial identities. The first part is devoted to the study of the algebra $D_n$ of $n \times n$ diagonal matrices. We prove that, in case of a degenerate trace, all its trace identities follow by the commutativity law and by pure trace identities. Moreover we relate the trace identities of $D_{n+1}$ endowed with a degenerate trace, to those of $D_n$ with the corresponding trace. This allows us to determine the generators of the trace T-ideal of $D_3$. In the second part we study commutative subalgebras of $M_k(F)$, denoted by $C_k$ of the type $F + J$ that can be endowed with the so-called st…

PolynomialAlgebra and Number TheoryTrace (linear algebra)Trace algebrasDiagonal matricesDegenerate energy levelsMathematics - Rings and AlgebrasType (model theory)Polynomial identitiesStirling numbersCombinatoricsMatrix (mathematics)Settore MAT/02 - Algebra16R10 16R30 16R50Rings and Algebras (math.RA)Diagonal matrixFOS: MathematicsDegenerate tracesAlgebra over a fieldCommutative propertyTrace algebras; Polynomial identities; Diagonal matrices; Degenerate traces; Stirling numbersMathematics
researchProduct