Palladium-Catalysed CH Bond Electrophilic Fluorination of Highly Substituted Arylpyrazoles: Experimental and DFT Mechanistic Insights
A general protocol for palladium-catalysed CH mono- and di-fluorination of highly substituted arylpyrazoles is reported. Coupling pathways and substrate limitations are discussed in the light of complementary mechanistic experimental and density functional theory (DFT) studies. The mono- and di-ortho-fluorination of arylpyrazoles having substituted pyrazole groups and ortho-, meta-, or para-substituted arene moieties is achieved. Various pyrazole groups can efficiently promote the direct CH activation/fluorination of substrates bearing valuable reactive ester, cyano, halide and nitro functions. The presence of methoxy, methyl and trifluoromethyl is tolerated on the pyrazole directing groups…