0000000000019305
AUTHOR
Miguel F. Refojo
Microscopic observation of unworn siloxane-hydrogel soft contact lenses by atomic force microscopy
In the present study, samples of lotrafilcon A, balafilcon A, and galyfilcon A contact lenses were observed by atomic force microscopy (AFM) in tapping mode at areas ranging from 0.25 to 400 m2. Mean roughness (Ra), root-mean-square roughness (Rms) and maximum roughness (Rmax) in nanometers were obtained for the three lens materials at different magnifications. The three contact lenses showed significantly different surface topography. However, roughness values were dependent of the surface area to be analyzed. For a 1 m2 area, statistics revealed a significantly more irregular surface of balafilcon A (Ra = 6.44 nm; Rms = 8.30 nm; Rmax = 96.82 nm) compared with lotrafilcon A (Ra = 2.40 nm; …
Determination of the oxygen transmissibility and permeability of hydrogel contact lenses
To test the validity of the method of stacked hydrogel contact lenses to obtain the oxygen permeability and transmissibility coefficients of the lenses, the coefficients of one low hydration (38% water) and two high hydration (55 and 58% water) hydrogel contact lenses stacked one to five on an oxygen electrode were deter- mined. From the oxygen diffusion through the lenses, the current intensity in the stationary state was determined, and from this the "instrument" the oxygen transmis- sibility was obtained. The permeability coefficients of the lenses, corrected for edge effects, were obtained from the slope of the plot of the reciprocal of the transmissibility coefficients versus the lens …
Porous structure of Purevision™ versus Focus® Night&Day™ and conventional hydrogel contact lenses
The surface and bulk structures of hydrogel contact lenses that contain siloxane moieties, Purevision™ (balafilcon A) and Focus®Night&Day™ (lotrafilcon A), were investigated. Standard hydrogel lenses of low (Seequence®), medium (Acuvue®), and high water content (Precision UV®) were used as controls. All the lenses were dehydrated in a series of ethanol solutions of increased concentration, critical-point dried in CO2, and sputter coated with gold/palladium before they were examined by scanning electron microscopy. Of all lenses examined, only the balafilcon lenses presented, in addition to the polymer network porosity characteristic of all hydrogels, a macroporous structure that was observe…
pH stability of ophthalmic solutions.
Background In this study, we evaluated the pH value of 17 ophthalmic solutions, and we investigated whether the pH of these solutions changed over time after the bottle was opened. Methods Fifteen bottles of each type of solution were chosen at random from different production lots. A 0.05-ml increment was taken from each bottle and was measured daily using a micropH 2002 Crison pH-meter over a period of 30 days. Results The results revealed differences between the pH values of the solutions; nine solutions presented pH values within ocular comfort range and eight solutions presented pH values between 3.5 and 6.4. Ten solutions presented non-statistically significant variations over time ( …
Refractive index and equilibrium water content of conventional and silicone hydrogel contact lenses
Prova tipográfica (In Press)
Qualitative and quantitative characterization of the in vitro dehydration process of hydrogel contact lenses
Purpose: To investigate the in vitro dehydration process of conventional hydrogel and silicone-hydrogel contact lens materials. Methods: Eight conventional hydrogel and five silicone-hydrogel contact lenses were dehydrated under controlled environmental conditions on an analytical balance. Data were taken at 1-min intervals and dehydration curves of cumulative dehydration (CD), valid dehydration (VD), and dehydration rate (DR) were obtained. Several quantitative descriptors of the dehydration process were obtained by further processing of the information. Results: Duration of phase I (r 2 5 0.921), CD at end of phase I (r 2 5 0.971), time to achieve a DR of � 1%/min (r 2 5 0.946) were stron…
Oxygen permeability of hydrogel contact lenses with organosilicon moieties
Oxygen transport through two extended wear (day and night) hydrogel contact lenses that contain organosilicon moieties (balafilcon A and lotrafilcon A) was studied in the hydrate (hydrogel) and dry (xerogel) states. The water uptake increased the oxygen permeability [(Dk)app] and transmissibility [Dk/L(av)] coefficients of the dry materials by about 70%. The (Dk)app for the hydrated lenses was determined following the so-called stack procedure. The values obtained were 107 +/- 4 barrer for balafilcon A and 141 +/- 5 barrer for lotrafilcon A, about 5-10 times larger than those previously reported for conventional (without organosilicon moieties) extended wear hydrogels contact lenses. The Dk…
Oxygen Transmissibility of Piggyback Systems With Conventional Soft and Silicone Hydrogel Contact Lenses
To investigate the apparent oxygen transmissibility of various piggyback systems using conventional and silicone hydrogel soft contact lenses of different water content and permeability, rigid poly(methyl methacrylate), and rigid gas-permeable lenses of medium, high, and ultrahigh oxygen permeability. The aim of the study was to establish which material (rigid or hydrogel) is more representative of the resulting oxygen performance of piggyback systems. METHODS: The apparent oxygen transmissibility of 66 piggyback systems was measured with an electrochemical method. Eighteen of these combinations involved the use of silicone hydrogel contact lenses currently available. One hyperpermeable rig…
Biological oxygen apparent transmissibility of hydrogel contact lenses with and without organosilicon moieties.
The instrument oxygen transmissibility (IOT) of organosilicon hydrogels, measured by electrochemical procedures, is 5-10 times larger than that of conventional hydrogels. A method is described that allows the estimation of the oxygen tension at the lens-cornea interface for closed- and open-eyelids situations by combining the IOT of the hydrogels and corneal parameters such as corneal thickness, corneal permeability and oxygen flux across the cornea. From these results the biological oxygen apparent transmissibility (BOAT) is obtained, an important parameter which an multiplication with the pressure of oxygen on the external part of the lens gives the oxygen flux onto the cornea. Contact le…
Microscopic observations of superficial ultrastructure of unworn siloxane-hydrogel contact lenses by cryo-scanning electron microscopy
The purpose of this study was to analyze three commercial siloxane-hydrogel contact lens materials, lotrafilcon A, balafilcon A, and galyfilcon A, by cryogenic scanning electron microscopy (cryoSEM). The fully hydrated lenses were frozen in slush liquid nitrogen and qualitatively observed in a cryogenic scanning electron microscope. The superficial ultrastructure of the siloxane-hydrogels was observed at the areas where the lens fractured during sample cryogenic preparation. There are qualitative differences among the three examined materials in the complex polymer network structure existing between the outer layer and the underlying polymer. CryoSEM, although destructive, is a useful tool …