Theoretical investigation of the spin crossover transition states of the addition of methane to a series of Group 6 metallocenes using minimum energy crossing points
International audience; Density functional calculations are reported on the addition of methane to Group 6 metallocenes, M(η-C5H5)2 (M), M(CH2(η-C5H4)2) (a-M) and M(η-C5Me5)2 (M*) where M = Mo and W. Full geometry optimisations were carried out on the singlet and triplet 16 electron complexes, 1[M] and 3[M], the η2-methane complexes, 1[M(η2-CH4)], and the hydridomethyl adducts, 1[M(CH3)(H)]. The triplet state for [M] was found to be more stable for all six metallocenes, the difference being least in the case of the ansa-bridged system. Formation of the hydridomethyl complexes was exoenergetic for all tungsten systems and for a-Mo, the other two Mo systems being endoenergetic. Minumum energy…