Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence
We provide a short review of existing models with multiple taxis performed by (at least) one species and consider a new mathematical model for tumor invasion featuring two mutually exclusive cell phenotypes (migrating and proliferating). The migrating cells perform nonlinear diffusion and two types of taxis in response to non-diffusing cues: away from proliferating cells and up the gradient of surrounding tissue. Transitions between the two cell subpopulations are influenced by subcellular (receptor binding) dynamics, thus conferring the setting a multiscale character. We prove global existence of weak solutions to a simplified model version and perform numerical simulations for the full se…
Numerical Simulation of a Contractivity Based Multiscale Cancer Invasion Model
We present a problem-suited numerical method for a particularly challenging cancer invasion model. This model is a multiscale haptotaxis advection-reaction-diffusion system that describes the macroscopic dynamics of two types of cancer cells coupled with microscopic dynamics of the cells adhesion on the extracellular matrix. The difficulties to overcome arise from the non-constant advection and diffusion coefficients, a time delay term, as well as stiff reaction terms.
An adaptive rectangular mesh administration and refinement technique with application in cancer invasion models
We present an administration technique for the bookkeeping of adaptive mesh refinement on (hyper-)rectangular meshes. Our technique is a unified approach for h-refinement on 1-, 2- and 3D domains, which is easy to use and avoids traversing the connectivity graph of the ancestry of mesh cells. Due to the employed rectangular mesh structure, the identification of the siblings and the neighbouring cells is greatly simplified. The administration technique is particularly designed for smooth meshes, where the smoothness is dynamically used in the matrix operations. It has a small memory footprint that makes it affordable for a wide range of mesh resolutions over a large class of problems. We pre…
Chemotaxis and Haptotaxis on Cellular Level
Chemotaxis and haptotaxis have been a main theme in the macroscopic study of bacterial and cellular motility. In this work, we use a successful model that describes cellular motility and investigate the influence these processes have on the shape and motility of fast migrating cells. We note that, despite the biological and modelling differences of chemotaxis and haptotaxis, the cells exhibit many similarities in their migration. In particular, after an initial adjustment phase, the cells obtain a stable shape, similar in both cases, and move with constant velocity.
A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model
In the present work we investigate a model that describes the chemotactically and proteolytically driven tissue invasion by cancer cells. The model is a system of advection-reaction-diffusion equations that takes into account the role of the serine protease urokinase-type plasminogen activator. The analytical and numerical study of such a system constitutes a challenge due to the merging, emerging, and traveling concentrations that the solutions exhibit. Classical numerical methods applied to this system necessitate very fine discretization grids to resolve these dynamics in an accurate way. To reduce the computational cost without sacrificing the accuracy of the solution, we apply adaptive…
Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model
We consider a haptotaxis cancer invasion model that includes two families of cancer cells. Both families, migrate on the extracellular matrix and proliferate. Moreover the model describes an epithelial-to-mesenchymal-like transition between the two families, as well as a degradation and a self-reconstruction process of the extracellular matrix. We prove positivity and conditional global existence and uniqueness of the classical solutions of the problem for large initial data.