0000000000020300
AUTHOR
Kathy S. Law
Summertime observations of ultrafine particles and cloud condensation nuclei from the boundary layer to the free troposphere in the Arctic
Abstract. The Arctic is extremely sensitive to climate change. Shrinking sea ice extent increases the area covered by open ocean during Arctic summer, which impacts the surface albedo and aerosol and cloud properties among many things. In this context extensive aerosol measurements (aerosol composition, particle number and size, cloud condensation nuclei, and trace gases) were made during 11 flights of the NETCARE July, 2014 airborne campaign conducted from Resolute Bay, Nunavut (74N, 94W). Flights routinely included vertical profiles from about 60 to 3000 m a.g.l. as well as several low-level horizontal transects over open ocean, fast ice, melt ponds, and polynyas. Here we discuss the vert…
Ship emissions measurement in the Arctic from plume intercepts of the Canadian Coast Guard <i>Amundsen</i> icebreaker from the <i>Polar 6</i> aircraft platform
Abstract. Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of emissions originating from the Canadian Coast Guard Amundsen icebreaker operating near Resolute Bay, NU, Canada have been investigated. The Amundsen burnt d…
In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism
New particle formation (NPF), which generates nucleation mode aerosol, was observed in the tropical Upper Troposphere (UT) and Tropical Tropopause Layer (TTL) by in situ airborne measurements over South America (January–March 2005), Australia (November–December 2005), West Africa (August 2006) and Central America (2004–2007). Particularly intense NPF was found at the bottom of the TTL. Measurements with a set of condensation particle counters (CPCs) with different <i>d</i><sub>p50</sub> (50% lower size detection efficiency diameter or "cut-off diameter") were conducted on board the M-55 <i>Geophysica</i> in the altitude range of 12.0–20.5 km and on board …
New insights into aerosol and climate in the Arctic
Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly …
Cross-hemispheric transport of central African biomass burning pollutants: implications for downwind ozone production
Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O<sub>3</sub>) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O<sub>3</sub> maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The…
Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker &lt;i&gt;Amundsen&lt;/i&gt; from the &lt;i&gt;Polar 6&lt;/i&gt; aircraft platform
Abstract. Decreasing sea ice and increasing marine navigability in northern latitudes have changed Arctic ship traffic patterns in recent years and are predicted to increase annual ship traffic in the Arctic in the future. Development of effective regulations to manage environmental impacts of shipping requires an understanding of ship emissions and atmospheric processing in the Arctic environment. As part of the summer 2014 NETCARE (Network on Climate and Aerosols) campaign, the plume dispersion and gas and particle emission factors of effluents originating from the Canadian Coast Guard icebreaker Amundsen operating near Resolute Bay, NU, Canada, were investigated. The Amundsen burned dist…
On the structure of the extra-tropical transition layer from in-situ observations
Abstract. In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994–2007 were combined to investigate the Extra-tropical Transition Layer (ExTL) region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces allowed us to relate the dynamical definition of the tropopause with trace gases distributions and vertical gradients and hence analyse its latitudinal dependence and seasonal variability. Analysis …
Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling
Abstract. We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convecti…