0000000000021459

AUTHOR

Bastian Barton

Anhydrous Amorphous Calcium Oxalate Nanoparticles from Ionic Liquids: Stable Crystallization Intermediates in the Formation of Whewellite

The mechanisms by which amorphous intermediates transform into crystalline materials are not well understood. To test the viability and the limits of the classical crystallization, new model systems for crystallization are needed. With a view to elucidating the formation of an amorphous precursor and its subsequent crystallization, the crystallization of calcium oxalate, a biomineral widely occurring in plants, is investigated. Amorphous calcium oxalate (ACO) precipitated from an aqueous solution is described as a hydrated metastable phase, as often observed during low-temperature inorganic synthesis and biomineralization. In the presence of water, ACO rapidly transforms into hydrated whewe…

research product

Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffrac…

research product

Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl

Abstract Rutile-type nanorods of SnO2 were obtained in a one-pot hydrothermal synthesis starting from SnCl4·5H2O and HCl in a temperature range between 200 and 240°C. Although the nanorods are polydisperse, the average length of the nanorods could be adjusted from 13 to 65 nm by varying of the reaction temperature. The resulting anisotropic nanocrystals were characterized using powder X-ray diffraction (PXRD), (high resolution-) transmission electron microscopy (HR-TEM), and selected area electron diffraction (SAED). The particle growth proceeds via a dissolution-recrystallization process with soluble [SnCl5(H2O)]− intermediates, as confirmed by PXRD, Raman spectroscopy, and magic angle spi…

research product

Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography

The crystal structure and disorder phenomena of Al4B2O9, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al4B2O9, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO6 octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis…

research product

Two-Step Nucleation Process of Calcium Silicate Hydrate, the Nanobrick of Cement

Despite a millennial history and the ubiquitous presence of cement in everyday life, the molecular processes underlying its hydration behavior, like the formation of calcium–silicate–hydrate (C–S–H), the binding phase of concrete, are mostly unexplored. Using time-resolved potentiometry and turbidimetry combined with dynamic light scattering, small-angle X-ray scattering, and cryo-TEM, we demonstrate C–S–H formation to proceed via a complex two-step pathway. In the first step, amorphous and dispersed spheroids are formed, whose composition is depleted in calcium compared to C–S–H and charge compensated with sodium. In the second step, these amorphous spheroids crystallize to tobermorite-typ…

research product

Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth

Organized three-dimensional (3D) nanomaterial architectures are promising candidates for applications in optoelectronics, catalysis, or theranostics owing to their anisotropy and advanced structural features that allow tailoring their physical and chemical properties. The synthesis of such complex but well-organized nanomaterials is difficult because the interplay of interfacial strain and facet-specific reactivity must be considered. Especially the magnetic anisotropy with controlled size and morphology plays a decisive role for applications like magnetic resonance imaging (MRI) and advanced data storage. We present a solution phase seed mediated synthesis of colloidal, well dispersible ir…

research product

From Single Molecules to Nanostructured Functional Materials: Formation of a Magnetic Foam Catalyzed by Pd@FexO Heterodimers

Multicomponent nanostructures containing purely organic or inorganic as well as hybrid organic–inorganic components connected through a solid interface are, unlike conventional spherical particles, able to combine different or even incompatible properties within a single entity. They are multifunctional and resemble molecular amphiphiles, like surfactants or block copolymers, which makes them attractive for the self-assembly of complex structures, drug delivery, bioimaging, or catalysis. We have synthesized Pd@FexO heterodimer nanoparticles (NPs) to fabricate a macroporous, hydrophobic, magnetically active, three-dimensional (3D), and template-free hybrid foam capable of repeatedly separati…

research product

Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate

Zinc phosphate, an important pigment in phosphate conversion coatings, forms protective films on rubbing surfaces. We have simulated the underlying reactions under shear by ball-milling zinc phosphate and monitored the reaction of hopeite (Zn3(PO4)2·4H2O) and the retarded recrystallization of the amorphous reaction product by powder X-ray diffraction (PXRD) and quantitative infrared (IR) spectroscopy. Abrasion of stainless steel was simulated by addition of pure 57Fe. The results provide insight into the chemistry of phosphate conversion coatings or during battery cycling of metal phosphates and give theoretical guidance for the preparation of amorphous phosphates. Thermal analysis revealed…

research product

Benzyl Alcohol Assisted Synthesis and Characterization of Highly Reduced Graphene Oxide (HRG)@ZrO2 Nanocomposites

We demonstrate a one-step solvothermal synthesis of HRG@ZrO2 nanocomposites using benzyl alcohol as solvent and stabilizing ligand. The as-synthesized HRG@ZrO2 hybrid nanocomposites showed a homogeneous distribution of the ZrO2 NPs (≈ 5 nm) onto HRG nanosheets. High resolution (HR)TEM, X-ray diffraction (XRD), and Raman spectroscopy confirmed the presence of cubic ZrO2. The presence of benzyl alcohol as stabilizing ligand was demonstrated by ultraviolet-visible (UV-vis), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The reduction of graphene oxide to HRG was also realized by X-ray photoelectron spectroscopy (XPS). A study of the HRG@ZrO2 formation mec…

research product

Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity

Superoxide dismutases (SOD) are a group of enzymes that catalyze the dismutation of superoxide (O2−) radicals into molecular oxygen (O2) and H2O2 as a first line of defense against oxidative stress. Here, we show that glycine-functionalized copper(II) hydroxide nanoparticles (Gly-Cu(OH)2 NPs) are functional SOD mimics, whereas bulk Cu(OH)2 is insoluble in water and catalytically inactive. In contrast, Gly-Cu(OH)2 NPs form water-dispersible mesocrystals with a SOD-like activity that is larger than that of their natural CuZn enzyme counterpart. Based on this finding, we devised an application where Gly-Cu(OH)2 NPs were incorporated into cigarette filters. Cigarette smoke contains high concent…

research product

Solid State Fluorination on the Minute Scale: Synthesis of WO 3− x F x with Photocatalytic Activity

research product

Carbon-doped titania as a precursor for titanate nanotubes

Carbon-doped titania was fabricated via carbothermal treatment in nitrogen–acetylene gas flow and further used as a precursor for multiwalled titanate nanotube (TNT) synthesis via alkaline hydrothermal route. Investigation of the reaction products after hydrothermal treatment of carbon-doped titania using Transmission electron microscopy, X-ray diffraction, and Brunauer–Emmett–Teller method shows the successful formation of TNTs. The presence of carbon was proved although the type of incorporation could not be certified. All samples show approximately the same carbon content before and after hydrothermal treatment. An increasing pretreatment temperature of titania precursor powders yields m…

research product

Solving Challenging Crystallographic Problems with Automated Electron Diffraction Tomography (ADT)

research product

Controlling the Morphology of Au–Pd Heterodimer Nanoparticles by Surface Ligands

Controlling the morphology of noble-metal nanoparticles is mandatory to tune specific properties such as catalytic and optical behavior. Heterodimers consisting of two noble metals have been synthesized, so far mostly in aqueous media using selective surfactants or chemical etching strategies. We report a facile synthesis for Au@Pd and Pd@Au heterodimer nanoparticles (NPs) with morphologies ranging from segregated domains (heteroparticles) to core-shell structures by applying a seed-mediated growth process with Au and Pd seed nanoparticles in 1-octadecene (ODE), which is a high-boiling organic solvent. The as-synthesized oleylamine (OAm) functionalized Au NPs led to the formation of OAm-Au@…

research product

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy.

RUB-5 and its related hydrous layer silicate RUB-6 were synthesized in the 1990s, but so far their structures have remained unknown due to their low crystallinity and disorder. The combination of 3D electron diffraction, X-ray powder diffraction, high-resolution transmission electron microscopy, structural modelling and diffraction simulations has enabled a comprehensive description of these two nanomaterials, revealng a new framework topology and a unique silica polymorph.

research product

Pd@Fe2O3 Superparticles with Enhanced Peroxidase Activity by Solution Phase Epitaxial Growth

Compared to conventional deposition techniques for the epitaxial growth of metal oxide structures on a bulk metal substrate, wet-chemical synthesis based on a dispersible template offers advantages such as low cost, high throughput, and the capability to prepare metal/metal oxide nanostructures with controllable size and morphology. However, the synthesis of such organized multicomponent architectures is difficult because the size and morphology of the components are dictated by the interplay of interfacial strain and facet-specific reactivity. Here we show that solution-processable two-dimensional Pd nanotetrahedra and nanoplates can be used to direct the epitaxial growth of γ-Fe2O3 nanoro…

research product

Surface Defects as a Tool to Solubilize and Functionalize WS 2 Nanotubes

Layered transition metal dichalcogenides contain a number of crystal defects which significantly change their properties may be beneficial or detrimental for a specific application. We have prepared defect-rich multiwalled WS2 nanotubes by reductive sulfidization of W18O49 nanowires that were obtained solvothermally from tungsten chloride in different alcohols. The synthesis of the W18O49 nanowires was monitored and their morphological characteristics (e. g. length, rigidity and aspect ratio) are described in detail. The effect of morphology of the nanowires on the synthesis of WS2 nanotubes was investigated in order to obtain WS2 nanotubes that are highly solvent dispersible. Dispersions o…

research product

CSD 1995979: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

research product

CCDC 1991689: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

research product