The average element order and the number of conjugacy classes of finite groups
Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.