0000000000021806

AUTHOR

K. Pasterny

showing 8 related works from this author

DFT calculations of structures, 13C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walle…

2012

Linearly conjugated benzene rings (acenes), belt-shaped molecules (cyclic acenes), and models of single-walled carbon nanotubes (SWCNTs) with one carboxylic group at the open end were fully optimized at the B3LYP/6-31G* level of theory. These models were selected to obtain some insight into the nuclear isotropic changes resulting from systematically increasing the basic building units of open-tip-monocarboxylated SWCNTs. In addition, the position of radial breathing mode (RBM), empirically correlated with the SWCNT diameter, was directly related with the radius of model cyclic acene rings. A regular convergence of selected structural, NMR, and Raman parameters with the molecular system size…

ChemistryChemical shiftchemistry.chemical_elementGeneral ChemistryCarbon nanotubeCarbon-13 NMRlaw.inventionCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakeZigzagChemical physicsComputational chemistrylawPhysics::Atomic and Molecular ClusterssymbolsMoleculeGeneral Materials ScienceRaman spectroscopyAceneCarbonMagnetic Resonance in Chemistry
researchProduct

Efficient Modeling of NMR Parameters in Carbon Nanosystems

2015

Rapid growth of nanoscience and nanotechnology requires new and more powerful modeling tools. Efficient theoretical modeling of large molecular systems at the ab initio and Density Functional Theory (DFT) levels of theory depends critically on the size and completeness of the basis set used. The recently designed variants of STO-3G basis set (STO-3Gel, STO-3Gmag), modified to correctly predict electronic and magnetic properties were tested on simple models of pristine and functionalized carbon nanotube (CNT) systems and fullerenes using the B3LYP and VSXC density functionals. Predicted geometries, vibrational properties, and HOMO/LUMO gaps of the model systems, calculated with typical 6-31G…

FullereneBasis (linear algebra)ChemistryIsotropyAb initioNanotechnologyCarbon nanotubeComputer Science Applicationslaw.inventionChemical physicslawPhysics::Atomic and Molecular ClustersDensity functional theoryPhysical and Theoretical ChemistryHOMO/LUMOBasis setJournal of Chemical Theory and Computation
researchProduct

Density functional theory studies of OH-modified open-ended single-wall zigzag carbon nanotubes (SWCNTs)

2010

Abstract Functionalized carbon nanotubes (CNTs) are often formed as result of oxidation and cleaning of raw product grown on metal catalyst. Structure and energy of ideal and OH-modified single-wall nanotubes (SWCNTs) of different length (2.8, 7.0 and 13.5 A) were obtained at the DFT-B3LYP level. From one to nine OH groups were added at the end of the nanotube and a nonadditive dependence of attachment energy on the number of substituents was observed. The energetics of SWCNT end substitution with OH groups was supported by high level MP2 and CCSD(T) determination of reaction energy: R – H + 1 / 2 O 2 → R – OH + Δ E for methane, benzene and anthracene. In addition, a vibrational analysis of…

AnthraceneNanotubeReaction energyCarbon nanotubeCondensed Matter PhysicsBiochemistryMethanelaw.inventionchemistry.chemical_compoundZigzagchemistryComputational chemistrylawPhysical chemistryDensity functional theoryPhysical and Theoretical ChemistryBenzeneJournal of Molecular Structure: THEOCHEM
researchProduct

DFT studies of OH-functionalized open-ended zigzag, armchair, and chiral single wall carbon nanotubes

2011

The functionalization of single-wall carbon nanotubes (SWCNTs) by attaching various molecules or molecular groups to the exterior walls or tips has attracted much attention, because it offers a possible way to modify their electronic, chemical, optical and mechanical properties. In this contribution the results of DFT studies of pristine and OH-modified open-ended zigzag (9,0), armchair (5,5) and chiral (8,2) nanotubes are reported. The calculations have been performed for partially and fully functionalized at one end model SWCNTs with dangling bonds saturated with hydrogen atoms and a nonadditive dependence of attachment energy on the number of substituents was observed.

Materials scienceHydrogenDangling bondchemistry.chemical_elementSurfaces and InterfacesCarbon nanotubeCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionCondensed Matter::Materials SciencechemistryZigzaglawChemical physicsComputational chemistryPhysics::Atomic and Molecular ClustersMaterials ChemistryMoleculeSurface modificationElectrical and Electronic Engineeringphysica status solidi (a)
researchProduct

DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes

2011

Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube ri…

Steric effectsNanotubeMaterials scienceBiomedicine generalCarboxylic AcidsSubstituentHealth InformaticsCarbon nanotubeDFTCatalysislaw.inventionEnd-substitutionInorganic Chemistrychemistry.chemical_compoundCarboxylation energylawOrganic chemistryComputer SimulationComputer Applications in ChemistryPhysical and Theoretical ChemistryAnthracenesLife Sciences generalOriginal PaperNanotubes CarbonOrganic ChemistryZigzag and armchair SWCNTBenzoic AcidPhenanthrenesComputer Science ApplicationsChemistryCrystallographyModels ChemicalComputational Theory and MathematicschemistryZigzagComputer Appl. in Life SciencesQuantum TheoryThermodynamicsMolecular MedicineSurface modificationCOOH functionalization
researchProduct

DFT calculations of structures, 13C NMR chemical shifts and Raman RBM mode of simple models of ultra small diameter (4,0) zigzag hydroxylated single …

2012

Abstract Selected acenes, cyclic acenes and model zigzag (4,0) single wall carbon nanotubes (SWCNTs) with one hydroxylic group at the open end were fully optimized at the B3LYP/6-31G* level of theory. The impact of molecule size on the B3LYP/pcS-2 calculated 13 C NMR chemical shifts was studied to characterize pristine and tip-monofunctionalized ultra narrow SWCNTs. The harmonic frequency of Raman radial breathing mode (RBM) was determined for monohydroxylated cyclic acenes and correlated with their diameter. A regular convergence of selected CC bond lengths, RBM frequency and carbon chemical shifts upon increasing the size of the systems was observed and fitted toward very large systems wi…

Materials scienceMechanical EngineeringChemical shiftMetals and AlloysAnalytical chemistrychemistry.chemical_elementCarbon nanotubeCarbon-13 NMRCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionBond lengthsymbols.namesakechemistryZigzagMechanics of MaterialsComputational chemistrylawMaterials ChemistrysymbolsMoleculeRaman spectroscopyCarbonSynthetic Metals
researchProduct

From planar to nonplanar cyclotriphosphazenes

2008

Abstract A possible existence of planar (PNX 2 ) 3 cyclotriphosphazene, where X = H, F, Cl and Br, or nonplanar (PXNX) 3 was studied at the B3LYP/6-311++G ∗∗ and MP2/6-311++G ∗∗ level of calculations. A linear correlation of total electronic energy difference (Δ E  =  E nonplanar  −  E planar ) on electronegativity of the X substituent was observed. The more stable nonplanar form was predicted (Δ E  = −43.49 kcal/mol) only in case of X = H. The remaining planar halogenocyclotriphosphazenes are more stable, in agreement with a few available experimental data.

ElectronegativityCrystallographychemistry.chemical_compoundPlanarChemistryComputational chemistrySubstituentPhysical and Theoretical ChemistryLinear correlationCondensed Matter PhysicsElectronic energyBiochemistryJournal of Molecular Structure: THEOCHEM
researchProduct

OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory

2011

The structures of ideal armchair (5,5) single-wall carbon nanotubes (SWCNTs) of different lengths (3.7, 8.8, and 16.0 A for C40H20, C80H20, and C140H20) and with 1–10 hydroxyl groups at the end of the nanotube were fully optimized at the B3LYP/3-21G level, and in some cases at the B3LYP/6-31G* level, and the energy associated with the attachment of the OH substituent was determined. The OH-group attachment energy was compared with the OH functionalization of phenanthrene and picene models and with previous results for zigzag (9.0) SWCNT systems. In comparison to zigzag SWCNTs, the armchair form is more (by about 5 to 10 kcal mol−1) reactive toward hydroxylation. Figure The structures of ide…

NanotubeMaterials scienceSubstituentchemistry.chemical_elementCarbon nanotubeHydroxylationSpectrum Analysis RamanDFTHydroxylation energyCatalysislaw.inventionInorganic Chemistrychemistry.chemical_compoundlawComputational chemistryPhysical and Theoretical ChemistryArmchair SWCNTOriginal PaperHydroxyl RadicalNanotubes CarbonOH functionalizationOrganic ChemistryCarbonComputer Science ApplicationsCrystallographyModels ChemicalComputational Theory and MathematicschemistryPiceneZigzagSurface modificationDensity functional theoryEnd substitutionCarbonJournal of Molecular Modeling
researchProduct