6533b870fe1ef96bd12cfc83

RESEARCH PRODUCT

OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory

Elżbieta ChełmeckaTeobald KupkaLeszek StobinskiLeszek StobinskiK. Pasterny

subject

NanotubeMaterials scienceSubstituentchemistry.chemical_elementCarbon nanotubeHydroxylationSpectrum Analysis RamanDFTHydroxylation energyCatalysislaw.inventionInorganic Chemistrychemistry.chemical_compoundlawComputational chemistryPhysical and Theoretical ChemistryArmchair SWCNTOriginal PaperHydroxyl RadicalNanotubes CarbonOH functionalizationOrganic ChemistryCarbonComputer Science ApplicationsCrystallographyModels ChemicalComputational Theory and MathematicschemistryPiceneZigzagSurface modificationDensity functional theoryEnd substitutionCarbon

description

The structures of ideal armchair (5,5) single-wall carbon nanotubes (SWCNTs) of different lengths (3.7, 8.8, and 16.0 A for C40H20, C80H20, and C140H20) and with 1–10 hydroxyl groups at the end of the nanotube were fully optimized at the B3LYP/3-21G level, and in some cases at the B3LYP/6-31G* level, and the energy associated with the attachment of the OH substituent was determined. The OH-group attachment energy was compared with the OH functionalization of phenanthrene and picene models and with previous results for zigzag (9.0) SWCNT systems. In comparison to zigzag SWCNTs, the armchair form is more (by about 5 to 10 kcal mol−1) reactive toward hydroxylation. Figure The structures of ideal armchair (5,5) single-wall carbon nanotubes (SWCNTs) of different lengths (3.7, 8.8, and 16.0 A for C40H20, C80H20, and C140H20) and with 1–10 hydroxyl groups at the end of the nanotube were fully optimized at the B3LYP/3-21 G level, and in some cases at the B3LYP/6-31 G* level, and the energy associated with the attachment of the OH substituent was determined.

https://doi.org/10.1007/s00894-011-1181-6