0000000000021932
AUTHOR
Walter Schnelle
Large orbital moments and internal magnetic fields in lithium nitridoferrate(I)
The iron nitridometalates Li2[(Li(1-x)Fe(I)(x))N] display ferromagnetic ordering and spin freezing. Large magnetic moments up to 5.0mu(B)/Fe are found in the magnetization. In Mössbauer effect studies huge hyperfine magnetic fields up to 696 kOe are observed at specific Fe sites. These extraordinary fields and moments originate in an unusual ligand field splitting for those Fe species leading [within local spin density approximation (LSDA)] to a localized orbitally degenerate doublet. Including spin-orbit interaction and strong intra-atomic electron correlation (LDA+SO+U) gives rise to a large orbital momentum.
Ultrafine MnWO4 nanoparticles and their magnetic properties
Abstract Ultrafine nanoparticles of MnWO4, a compound showing low-temperature multiferroicity in the bulk, were synthesized by the polyol method. Studies using powder X-ray diffraction, scanning and transmission electron microscopy, dynamic light scattering, differential sedimentation and sorption techniques show the formation of a single-phase material, which is composed of MnWO4 nanoparticles with a prolate ellipsoidal shape (short axis of 4–5 nm, long axis of 11–12 nm) and an unprecedented high specific surface area of 166 m2 g−1. The as-prepared MnWO4 nanoparticles are readily crystalline after the liquid-phase synthesis. Temperature and field dependent magnetization measurements indica…
Improving thermoelectric performance of TiNiSn by mixing MnNiSb in the half-Heusler structure
The thermoelectric properties of n type semiconductor, TiNiSn is optimized by partial substitution with metallic, MnNiSb in the half Heusler structure. Herein, we study the transport properties and intrinsic phase separation in the system. The Ti1-xMnxNiSn1-xSbx alloys were prepared by arc-melting and were annealed at temperatures obtained from differential thermal analysis and differential scanning calorimetry results. The phases were characterized using powder X-ray diffraction patterns, energy dispersive X-ray spectroscopy, and differential scanning calorimetry. After annealing the majority phase was TiNiSn with some Ni rich sites and the minority phases was majorly Ti6Sn5, Sn, and MnSn2…
Lattice-Site-Specific Spin Dynamics in Double PerovskiteSr2CoOsO6
Magnetic properties and spin dynamics have been studied for the structurally ordered double perovskite Sr2CoOsO6. Neutron diffraction, muon-spin relaxation, and ac-susceptibility measurements reveal two antiferromagnetic (AFM) phases on cooling from room temperature down to 2 K. In the first AFM phase, with transition temperature TN1=108 K, cobalt (3d7, S=3/2) and osmium (5d2, S=1) moments fluctuate dynamically, while their average effective moments undergo long-range order. In the second AFM phase below TN2=67 K, cobalt moments first become frozen and induce a noncollinear spin-canted AFM state, while dynamically fluctuating osmium moments are later frozen into a randomly canted state at…
Weak itinerant ferromagnetism and electronic and crystal structures of alkali-metal iron antimonides: NaFe4Sb12andKFe4Sb12
The synthesis, chemical, structural, and magnetic properties of alkali-metal compounds with filled-skutterudite structure, $\mathrm{Na}{\mathrm{Fe}}_{4}{\mathrm{Sb}}_{12}$ and $\mathrm{K}{\mathrm{Fe}}_{4}{\mathrm{Sb}}_{12}$, are described. X-ray and neutron diffraction and elemental analysis established the crystal structure without defects and disorder on the cation site. The temperature and pressure dependence of the cubic unit cell of $\mathrm{Na}{\mathrm{Fe}}_{4}{\mathrm{Sb}}_{12}$ and the displacement parameter of Na are investigated. The electronic structure is calculated by density functional methods (LMTO, FPLO). Quantum chemical calculations (electron localization function) reveal …
Pressure-induced magnetic collapse and metallization of TlFe1.6Se2
The crystal structure, magnetic ordering, and electrical resistivity of $\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}$ were studied at high pressures. Below $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$, $\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}$ is an antiferromagnetically ordered semiconductor with a $\mathrm{ThC}{\mathrm{r}}_{2}\mathrm{S}{\mathrm{i}}_{2}$-type structure. The insulator-to-metal transformation observed at a pressure of $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$ is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range $\ensuremath{\sim}7.5\text{--}11\phantom{\rule{…