0000000000022070
AUTHOR
Francisco J. Planes
An extended reconstruction of human gut microbiota metabolism for personalized nutrition
ABSTRACTUnderstanding how diet and gut microbiota interact in the context of human health is a key question in personalized nutrition. Genome-scale metabolic networks and constraint-based modeling approaches are promising to systematically address this complex question. However, when applied to nutritional questions, a major issue in existing reconstructions is the lack of information about degradation pathways of relevant nutrients in the diet that are metabolized by the gut microbiota. Here, we present AGREDA, an extended reconstruction of the human gut microbiota metabolism for personalized nutrition. AGREDA includes the degradation pathways of 231 nutrients present in the human diet and…
Adaptation of the Human Gut Microbiota Metabolic Network During the First Year After Birth
Predicting the metabolic behavior of the human gut microbiota in different contexts is one of the most promising areas of constraint-based modeling. Recently, we presented a supra-organismal approach to build context-specific metabolic networks of bacterial communities using functional and taxonomic assignments of meta-omics data. In this work, this algorithm is applied to elucidate the metabolic changes induced over the first year after birth in the gut microbiota of a cohort of Spanish infants. We used metagenomics data of fecal samples and nutritional data of 13 infants at five time points. The resulting networks for each time point were analyzed, finding significant alterations once sol…