0000000000022395
AUTHOR
Niki Pfeifer
Probabilistic inferences from conjoined to iterated conditionals
Abstract There is wide support in logic, philosophy, and psychology for the hypothesis that the probability of the indicative conditional of natural language, P ( if A then B ) , is the conditional probability of B given A, P ( B | A ) . We identify a conditional which is such that P ( if A then B ) = P ( B | A ) with de Finetti's conditional event, B | A . An objection to making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of these compounds and iterations. We interpret the compounds and iterations as cond…
Square of Opposition Under Coherence
Various semantics for studying the square of opposition have been proposed recently. So far, only (Gilio et al., 2016) studied a probabilistic version of the square where the sentences were interpreted by (negated) defaults. We extend this work by interpreting sentences by imprecise (set-valued) probability assessments on a sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square in terms of acceptability and show how to construct probabilistic versions of the square of opposition by forming suitable tripartitions. Finally, as an application, we present a new square involving generalized qu…
On Trivalent Logics, Compound Conditionals, and Probabilistic Deduction Theorems
In this paper we recall some results for conditional events, compound conditionals, conditional random quantities, p-consistency, and p-entailment. Then, we show the equivalence between bets on conditionals and conditional bets, by reviewing de Finetti's trivalent analysis of conditionals. But our approach goes beyond de Finetti's early trivalent logical analysis and is based on his later ideas, aiming to take his proposals to a higher level. We examine two recent articles that explore trivalent logics for conditionals and their definitions of logical validity and compare them with our approach to compound conditionals. We prove a Probabilistic Deduction Theorem for conditional events. Afte…
Probabilistic entailment and iterated conditionals
In this paper we exploit the notions of conjoined and iterated conditionals, which are defined in the setting of coherence by means of suitable conditional random quantities with values in the interval $[0,1]$. We examine the iterated conditional $(B|K)|(A|H)$, by showing that $A|H$ p-entails $B|K$ if and only if $(B|K)|(A|H) = 1$. Then, we show that a p-consistent family $\mathcal{F}=\{E_1|H_1,E_2|H_2\}$ p-entails a conditional event $E_3|H_3$ if and only if $E_3|H_3=1$, or $(E_3|H_3)|QC(\mathcal{S})=1$ for some nonempty subset $\mathcal{S}$ of $\mathcal{F}$, where $QC(\mathcal{S})$ is the quasi conjunction of the conditional events in $\mathcal{S}$. Then, we examine the inference rules $A…
Generalized probabilistic modus ponens
Modus ponens (from A and “if A then C” infer C) is one of the most basic inference rules. The probabilistic modus ponens allows for managing uncertainty by transmitting assigned uncertainties from the premises to the conclusion (i.e., from P(A) and P(C|A) infer P(C)). In this paper, we generalize the probabilistic modus ponens by replacing A by the conditional event A|H. The resulting inference rule involves iterated conditionals (formalized by conditional random quantities) and propagates previsions from the premises to the conclusion. Interestingly, the propagation rules for the lower and the upper bounds on the conclusion of the generalized probabilistic modus ponens coincide with the re…
Interpreting Connexive Principles in Coherence-Based Probability Logic
We present probabilistic approaches to check the validity of selected connexive principles within the setting of coherence. Connexive logics emerged from the intuition that conditionals of the form If \(\mathord {\thicksim }A\), then A, should not hold, since the conditional’s antecedent \(\mathord {\thicksim }A\) contradicts its consequent A. Our approach covers this intuition by observing that for an event A the only coherent probability assessment on the conditional event \(A|\bar{A}\) is \(p(A|\bar{A})=0\). Moreover, connexive logics aim to capture the intuition that conditionals should express some “connection” between the antecedent and the consequent or, in terms of inferences, valid…
Probabilistic semantics for categorical syllogisms of Figure II
A coherence-based probability semantics for categorical syllogisms of Figure I, which have transitive structures, has been proposed recently (Gilio, Pfeifer, & Sanfilippo [15]). We extend this work by studying Figure II under coherence. Camestres is an example of a Figure II syllogism: from Every P is M and No S is M infer No S is P. We interpret these sentences by suitable conditional probability assessments. Since the probabilistic inference of \(\bar{P}|S\) from the premise set \(\{M|P,\bar{M}|S\}\) is not informative, we add \(p(S|(S \vee P))>0\) as a probabilistic constraint (i.e., an “existential import assumption”) to obtain probabilistic informativeness. We show how to propagate the…
Probabilities of conditionals and previsions of iterated conditionals
Abstract We analyze selected iterated conditionals in the framework of conditional random quantities. We point out that it is instructive to examine Lewis's triviality result, which shows the conditions a conditional must satisfy for its probability to be the conditional probability. In our approach, however, we avoid triviality because the import-export principle is invalid. We then analyze an example of reasoning under partial knowledge where, given a conditional if A then C as information, the probability of A should intuitively increase. We explain this intuition by making some implicit background information explicit. We consider several (generalized) iterated conditionals, which allow…
A Generalized Probabilistic Version of Modus Ponens
Modus ponens (\emph{from $A$ and "if $A$ then $C$" infer $C$}, short: MP) is one of the most basic inference rules. The probabilistic MP allows for managing uncertainty by transmitting assigned uncertainties from the premises to the conclusion (i.e., from $P(A)$ and $P(C|A)$ infer $P(C)$). In this paper, we generalize the probabilistic MP by replacing $A$ by the conditional event $A|H$. The resulting inference rule involves iterated conditionals (formalized by conditional random quantities) and propagates previsions from the premises to the conclusion. Interestingly, the propagation rules for the lower and the upper bounds on the conclusion of the generalized probabilistic MP coincide with …
Probabilistic entailment and iterated conditionals
In this paper we exploit the notions of conjoined and iterated conditionals, which are defined in the setting of coherence by means of suitable conditional random quantities with values in the interval $[0,1]$. We examine the iterated conditional $(B|K)|(A|H)$, by showing that $A|H$ p-entails $B|K$ if and only if $(B|K)|(A|H) = 1$. Then, we show that a p-consistent family $\mathcal{F}=\{E_1|H_1,E_2|H_2\}$ p-entails a conditional event $E_3|H_3$ if and only if $E_3|H_3=1$, or $(E_3|H_3)|QC(\mathcal{S})=1$ for some nonempty subset $\mathcal{S}$ of $\mathcal{F}$, where $QC(\mathcal{S})$ is the quasi conjunction of the conditional events in $\mathcal{S}$. Then, we examine the inference rules $A…
Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals
We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on con…
Transitive reasoning with imprecise probabilities
We study probabilistically informative (weak) versions of transitivity, by using suitable definitions of defaults and negated defaults, in the setting of coherence and imprecise probabilities. We represent p-consistent sequences of defaults and/or negated defaults by g-coherent imprecise probability assessments on the respective sequences of conditional events. Finally, we prove the coherent probability propagation rules for Weak Transitivity and the validity of selected inference patterns by proving the p-entailment for the associated knowledge bases.
Transitive Reasoning with Imprecise Probabilities
We study probabilistically informative (weak) versions of transitivity by using suitable definitions of defaults and negated defaults in the setting of coherence and imprecise probabilities. We represent \(\text{ p-consistent }\) sequences of defaults and/or negated defaults by g-coherent imprecise probability assessments on the respective sequences of conditional events. Finally, we present the coherent probability propagation rules for Weak Transitivity and the validity of selected inference patterns by proving p-entailment of the associated knowledge bases.
Transitivity in coherence-based probability logic
We study probabilistically informative (weak) versions of transitivity by using suitable definitions of defaults and negated defaults in the setting of coherence and imprecise probabilities. We represent p-consistent sequences of defaults and/or negated defaults by g-coherent imprecise probability assessments on the respective sequences of conditional events. Moreover, we prove the coherent probability propagation rules for Weak Transitivity and the validity of selected inference patterns by proving p-entailment of the associated knowledge bases. Finally, we apply our results to study selected probabilistic versions of classical categorical syllogisms and construct a new version of the squa…
Centering and Compound Conditionals under Coherence
There is wide support in logic , philosophy , and psychology for the hypothesis that the probability of the indicative conditional of natural language, \(P(\textit{if } A \textit{ then } B)\), is the conditional probability of B given A, P(B|A). We identify a conditional which is such that \(P(\textit{if } A \textit{ then } B)= P(B|A)\) with de Finetti’s conditional event, B|A. An objection to making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of these compounds and iterations. We interpret the compounds a…
Probability Propagation in Selected Aristotelian Syllogisms
This paper continues our work on a coherence-based probability semantics for Aristotelian syllogisms (Gilio, Pfeifer, and Sanfilippo, 2016; Pfeifer and Sanfilippo, 2018) by studying Figure III under coherence. We interpret the syllogistic sentence types by suitable conditional probability assessments. Since the probabilistic inference of $P|S$ from the premise set ${P|M, S|M}$ is not informative, we add $p(M|(S ee M))>0$ as a probabilistic constraint (i.e., an ``existential import assumption'') to obtain probabilistic informativeness. We show how to propagate the assigned premise probabilities to the conclusion. Thereby, we give a probabilistic meaning to all syllogisms of Figure~III. We…
Probabilistic squares and hexagons of opposition under coherence
Various semantics for studying the square of opposition and the hexagon of opposition have been proposed recently. We interpret sentences by imprecise (set-valued) probability assessments on a finite sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square and of the hexagon in terms of acceptability. Then, we show how to construct probabilistic versions of the square and of the hexagon of opposition by forming suitable tripartitions of the set of all coherent assessments on a finite sequence of conditional events. Finally, as an application, we present new versions of the square and of the…