6533b873fe1ef96bd12d5774

RESEARCH PRODUCT

Probabilistic squares and hexagons of opposition under coherence

Niki PfeiferGiuseppe Sanfilippo

subject

Settore MAT/06 - Probabilita' E Statistica MatematicaSquare of opposition02 engineering and technologycoherence conditional events hexagon of opposition imprecise probability square of opposition quantified sentences tripartition01 natural sciencesSquare (algebra)Theoretical Computer ScienceSet (abstract data type)Probability theoryArtificial IntelligenceFOS: Mathematics0202 electrical engineering electronic engineering information engineering0101 mathematicsMathematicsApplied MathematicsProbability (math.PR)010102 general mathematicsProbabilistic logicMathematics - LogicCoherence (statistics)Settore MAT/01 - Logica MatematicaImprecise probabilityAlgebra03b48020201 artificial intelligence & image processingLogic (math.LO)AlgorithmMathematics - ProbabilitySoftwareSentence

description

Various semantics for studying the square of opposition and the hexagon of opposition have been proposed recently. We interpret sentences by imprecise (set-valued) probability assessments on a finite sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square and of the hexagon in terms of acceptability. Then, we show how to construct probabilistic versions of the square and of the hexagon of opposition by forming suitable tripartitions of the set of all coherent assessments on a finite sequence of conditional events. Finally, as an application, we present new versions of the square and of the hexagon involving generalized quantifiers.

10.1016/j.ijar.2017.05.014http://hdl.handle.net/10447/234534