0000000000022633

AUTHOR

Daniel Kolbe

Rydberg excitation of trapped cold ions: a detailed case study

We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.

research product

Triple resonant four-wave mixing: A microwatt continuous-wave laser source in the vacuum ultraviolet region at 120 nm

We present a vacuum ultraviolet laser source by four-wave mixing in mercury vapour based on solid-state laser systems. Maximum powers of 6μW were achieved with an increase of four orders of magnitude in efficiency.

research product

4W continuous-wave narrow-linewidth tunable solid-state laser source at 546nm by externally frequency doubling a ytterbium-doped single-mode fiber laser system.

A high-power continuous-wave coherent light source at 545.5nm is described. We use 8.3W from a solid-state ytterbium-doped single-mode fiber oscillator/amplifier system as input into an external frequency doubling stage. This system produces up to 4.1 W of stable green single-frequency laser radiation. We characterize the light source by performing absorption spectroscopy on iodine across the full tuning range of the fiber laser and saturation spectroscopy on one strong iodine line of the doppler-broadened spectrum.

research product

A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm

A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 6^1S - 6^3P transition in mercury.

research product

ATRAP antihydrogen experiments

Antihydrogen (Hbar) was first produced at CERN in 1996. Over the past decade our ATRAP collaboration has made massive progress toward our goal of producing large numbers of cold Hbar atoms that will be captured in a magnetic gradient trap for precise comparison between the atomic spectra of matter and antimatter. The AD at CERN provides bunches of 3 × 107 low energy Pbars every 100 seconds. We capture and cool to 4 K, 0.1% of these in a cryogenic Penning trap. By stacking many bunches we are able to do experiments with 3 × 105 Pbars. ∼100 e+/sec from a 22Na radioactive source are captured and cooled in the trap, with 5 × 106 available experiments.We have developed 2 ways to make Hbar from t…

research product

Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation.

Efficient continuous-wave four-wave mixing by using three different fundamental wavelengths with individual detunings to resonances of the nonlinear medium is shown. Up to 6 μW of vacuum ultraviolet light at 121 nm can be generated, which corresponds to an increase of three orders of magnitude in efficiency. This opens the field of quantum information processing by Rydberg entanglement of trapped ions.

research product

A semiconductor laser system for the production of antihydrogen

Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Las er excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-e xchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the resul…

research product

Rydberg Excitation of a Single Trapped Ion.

We demonstrate excitation of a single trapped cold $^{40}$Ca$^+$ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d$^2$D$_{3/2}$ to 51 F, 52 F and 3d$^2$D$_{5/2}$ to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

research product

Continuous-wave spontaneous lasing in mercury pumped by resonant two-photon absorption

The first continuous-wave two-photon absorption laser-induced stimulated emission (CTALISE) is demonstrated. The 7^1S-6^1P transition in mercury at 1014nm wavelength is used and selective lasing of different isotopes is observed.

research product

Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal

We present a double-pass scheme for high-efficiency, high-power, second-harmonic generation (SHG) in a single MgO-doped periodically poled stoichiometric lithium tantalate (MgO:PPSLT) crystal. The device is pumped by a single-frequency, continuous-wave fiber amplifier laser system at a wavelength of 1091 nm. For the double-pass scheme, a conversion efficiency of 60% and a harmonic power of 12.8 W at a wavelength of 545.5 nm with a high beam quality of (M2<1.2) is achieved. Compared to single-pass SHG, a double-pass enhancement factor of more than two is observed at the highest fundamental pump power.

research product

Two-photon spectroscopy of mercury and velocity-selective double resonances

Two-photon laser spectroscopy of the $6\text{ }{^{1}S}_{0}\ensuremath{-}7\text{ }{^{1}S}_{0}$ transition in mercury has been performed using two copropagating continuous-wave laser beams. One laser beam is at 254 nm wavelength and can be tuned to the $6\text{ }{^{1}S}_{0}\ensuremath{-}6\text{ }{^{3}P}_{1}$ resonance. The other laser beam is at 408 nm. Two very different regimes can be distinguished, one far off resonance and one near resonance with the one-photon resonance. A resonance which is not Doppler broadened has been observed for low Rabi frequencies. This velocity-selective double resonance in a three-level ladder system is analogous to the dark resonance in three-level $\ensuremat…

research product

Continuous-wave Lyman-alpha generation with solid-state lasers.

A coherent continuous-wave Lyman-alpha source based on four-wave sum-frequency mixing in mercury vapor has been realized with solid-state lasers. The third-order nonlinear susceptibility is enhanced by the 6(1)S - 7(1)S two-photon resonance and the near 6(1)S-6(3)P one-photon resonance. The phase matching curve for this four-wave mixing scheme is observed for the first time. In addition we investigate the two-photon enhancement of the Lyman-alpha yield and observe that the maxima of Lyman-alpha generation are shifted compared to the two-photon resonances of the different isotopes.

research product

Continuous Lyman-alpha generation by four-wave mixing in mercury for laser cooling of antihydrogenThis paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at École de Physique, les Houches, France, 30 May – 4 June, 2010.

Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser cooling of antihydrogen can be done on the strong 1S–2P transition at the wavelength of Lyman-alpha (121.6 nm). A continuous wave laser at the Lyman-alpha wavelength based on solid-state fundamental lasers is described. By using a two-photon and a near one-photon resonance a scan across the whole phase matching curve of the four-wave mixing process is possible. Furthermore the influence of the beam profile of one fundamental beam on the four-wave mixing process is studied.

research product