Strategies for accelerating ant colony optimization algorithms on graphical processing units
Ant colony optimization (ACO) is being used to solve many combinatorial problems. However, existing implementations fail to solve large instances of problems effectively. In this paper we propose two ACO implementations that use graphical processing units to support the needed computation. We also provide experimental results by solving several instances of the well-known orienteering problem to show their features, emphasizing the good properties that make these implementations extremely competitive versus parallel approaches.