0000000000022740

AUTHOR

Anna Fejtova

0000-0002-1815-4409

Transient Confinement of CaV2.1 Ca2+-Channel Splice Variants Shapes Synaptic Short-Term Plasticity

Summary The precision and reliability of synaptic information transfer depend on the molecular organization of voltage-gated calcium channels (VGCCs) within the presynaptic membrane. Alternative splicing of exon 47 affects the C-terminal structure of VGCCs and their affinity to intracellular partners and synaptic vesicles (SVs). We show that hippocampal synapses expressing VGCCs either with exon 47 (CaV2.1+47) or without (CaV2.1Δ47) differ in release probability and short-term plasticity. Tracking single channels revealed transient visits (∼100 ms) of presynaptic VGCCs in nanodomains (∼80 nm) that were controlled by neuronal network activity. Surprisingly, despite harboring prominent bindin…

research product

Acid sphingomyelinase – a regulator of canonical transient receptor potential channel 6 (TRPC6) activity

Recent investigations propose the acid sphingomyelinase (ASM)/ceramide system as a novel target for antidepressant action. ASM catalyzes the breakdown of the abundant membrane lipid sphingomyelin to the lipid messenger ceramide. This ASM‐induced lipid modification induces a local shift in membrane properties, which influences receptor clustering and downstream signaling. Canonical transient receptor potential channels 6 (TRPC6) are non‐selective cation channels located in the cell membrane that play an important role in dendritic growth, synaptic plasticity and cognition in the brain. They can be activated by hyperforin, an ingredient of the herbal remedy St. John’s wort for treatment of de…

research product