Laser Ultrasonics Inspection of Train Wheel - Evaluation of Optimized Setup
In the railway field, the safety of passengers and the service life of train components are a crucial issue. For this reason, continuous periodic inspections by non-destructive techniques are required. Among these, ultrasonic tests are widely used in this field, even though the conventional ultrasound techniques have the disadvantage of requiring the disassembly of the wheels and of putting the train out of service. This procedure is expensive and time-consuming and can be neglected if non-contact ultrasonic techniques are used. In this work, the authors present an experimental research on some defects, artificially obtained on a railway wheel supplied by Trenitalia Spa, by adopting three d…
Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers
Abstract Due to its good mechanical characteristics, low cost and high availability in the current market, sisal fiber is one of the most used for the manufacturing of biocomposites in various industrial fields (automotive, marine, civil construction etc.). The particular sub-fibrillar structure of the sisal fiber (similar to aramid fibers) and the corresponding anisotropic behavior detected by recent research activities, suggest that such biocomposites should exhibit also high impact strength, in such a way to permit their advantageously use also for the manufacturing of crashworthy components (bumpers, helmets, protection systems etc.), that are at the same time also eco-friendly, lightwe…
First lamina hybridization of high performance CFRP with Kevlar fibers: Effect on impact behavior and nondestructive evaluation
The impact behavior of a carbon-Kevlar hybrid composite, widely used in sport car manufacturing, was evaluated. To highlight the hybridization effect, comparative analyses were performed with the basic CFRP laminate having the same lay-up. Tensile, bending and low velocity impact tests, followed by nondestructive inspections, highlighted that Kevlar first lamina hybridization leads to an increment in specific impact strength, up to 55%. To assess the most reliable technique to detect the impact damage, nondestructive evaluation was performed by pulsed thermography, phased array ultrasonic technique, computed tomography and digital radiography. Phased array ultrasonic technique can be consid…
Laser Ultrasonics Inspection for Defect Evaluation on Train Wheel
Abstract Passengers’ safety and in-service life of wheelset axles play an important role in railway vehicles. For this reason, periodic inspections are necessary. Among non-destructive techniques, ultrasonic ones are widely applied in this field. The main disadvantage of conventional ultrasonic techniques is that the overall inspection of wheels requires the train to be put out-of-service and disassembly each part, which is time-consuming and expensive. In this paper, a non-conventional non-contact laser ultrasonic inspection for train wheels is proposed. The proposed method uses a laser interferometer to receive the ultrasonic wave without contact. The receiving system allows choosing the …
Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review
The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged. However, the repair of such critical bone defects remains a challenge. The present review collected the most significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a comprehensive summa…
Laser ultrasonics for defect evaluation on coated railway axles
Abstract This scientific paper focuses on the application of an advanced non-destructive technique for an effective inspection of railway axles. The method pertains to ultrasonic techniques, which are widely used in the railway field. The experimental investigation was carried out on simulated defects tooled near the cross section reduction of the axle, in order to simulate fatigue cracks which, due to notch effect, can trigger crack propagation and axle failure. The aim of this research activity is to evaluate how efficiently the proposed technique detects defects and to verify its applicability to axles with a black coating for protection. In view of the experimental setup, comprising a p…