0000000000023009
AUTHOR
Lukas Müchler
Topological Insulators from a Chemist's Perspective
Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.
Magnetic Heusler Compounds
Abstract Heusler compounds are a remarkable class of intermetallic materials with 1:1:1 (often called Half-Heusler) or 2:1:1 composition comprising more than 1500 members. New properties and potential fields of applications emerge constantly; the prediction of topological insulators is the most recent example. Surprisingly, the properties of many Heusler compounds can easily be predicted by the valence electron count or within a rigid band approach. The wide range of the multifunctional properties of Heusler compounds is reflected in extraordinary magnetooptical, magnetoelectronic, and magnetocaloric properties. Co 2 -Heusler compounds are predicted and proven half-metallic ferromagnets sho…
Topological Insulators from a Chemist’s Perspective
Topology and chemistry are deeply entangled subjects, whichmanifests in the way chemists like to think and approachproblems. Although not at first glance, topology allows thecategorizationoffundamentalinherentpropertiesofthehugenumber of different chemical compounds, carving out theunique features of a class of materials of different complexity,a topic which Turro worked out in his treatise on geometricaland topological thinking in chemistry.
Topological insulators in filled skutterudites
We propose new topological insulators in cerium filled skutterudite (FS) compounds based on ab initio calculations. We find that two compounds CeOs4As12 and CeOs4Sb12 are zero gap materials with band inversion between Os-d and Ce-f orbitals, which are thus parent compounds of two and three-dimensional topological insulators just like bulk HgTe. At low temperature, both compounds become topological Kondo insulators, which are Kondo insulators in the bulk, but have robust Dirac surface states on the boundary. This new family of topological insulators has two advantages compared to previous ones. First, they can have good proximity effect with other superconducting FS compounds to realize Maja…
Prediction of Weak Topological Insulators in Layered Semiconductors
We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit-cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Though the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as…
Topological insulators and thermoelectric materials
Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and the…
Topological insulators and thermoelectric materials
Topological insulators (TIs) are a new quantum state of matter which have gapless surface states inside the bulk energy gap. Starting with the discovery of two dimensional TIs, the HgTe-based quantum wells, many new topological materials have been theoretically predicted and experimentally observed. Currently known TI materials can possibly be classified into two families, the HgTe family and the Bi2Se family. The signatures found in the electronic structure of a TI also cause these materials to be excellent thermoelectric materials. On the other hand, excellent thermoelectric materials can be also topologically trivial. Here we present a short introduction to topological insulators and the…
Topological Insulators in Ternary Compounds with a Honeycomb Lattice
One of the most exciting subjects in solid state physics is a single layer of graphite which exhibits a variety of unconventional novel properties. The key feature of its electronic structure are linear dispersive bands which cross in a single point at the Fermi energy. This so-called Dirac cone is closely related to the surface states of the recently discovered topological insulators. The ternary compounds, such as LiAuSe and KHgSb with a honeycomb structure of their Au-Se and Hg-Sb layers feature band inversion very similar to HgTe which is a strong precondition for existence of the topological surface states. In contrast to graphene with two Dirac cones at K and K' points, these material…
Effect of pressure on superconductivity in NaAlSi
The ternary superconductor NaAlSi, isostructural with LiFeAs, the ``111'' iron pnictide superconductor, is investigated under pressure. The structure remains stable up to 15 GPa. Resistivity and susceptibility measurements show an increase of ${T}_{c}$ up to 2 GPa, followed by a decrease until superconductivity disappears at 4.8 GPa. Band structure calculations show that pressure should have a negligible effect on the electronic structure and the Fermi surface and thus the disappearance of superconductivity under pressure must have a different origin. We compare the electronic structure of NaAlSi under pressure with that of nonsuperconducting isostructural NaAlGe.
CSD 1784742: Experimental Crystal Structure Determination
Related Article: Leslie Schoop, Lukas Müchler, Jennifer Schmitt, Vadim Ksenofontov, Sergey Medvedev, Jürgen Nuss, Frederick Casper, Martin Jansen, R. J. Cava, Claudia Felser|2012|Phys.Rev.B|86|174522|doi:10.1103/PhysRevB.86.174522