0000000000023010

AUTHOR

Jennifer Schmitt

showing 6 related works from this author

Engineering half-Heusler thermoelectric materials using Zintl chemistry

2016

In this Review, the structure, bonding and defects of half-Heusler compounds are explained in terms of the framework of Zintl (or valence-precise) chemistry. This deeper understanding of the structure and electronic properties of half-Heusler compounds should aid the design of improved thermoelectric materials.

Materials scienceNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyThermoelectric materials01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsMaterials Chemistry0210 nano-technologyEnergy (miscellaneous)Electronic propertiesNature Reviews Materials
researchProduct

Optimization of the carrier concentration in phase-separated half-Heusler compounds

2014

Inspired by the promising thermoelectric properties of phase-separated half-Heusler materials, we investigated the influence of electron doping in the n-type Ti_(0.3−x)Zr_(0.35)Hf_(0.35)NiSn compound. The addition of Nb to this compound led to a significant increase in its electrical conductivity, and shifted the maximum Seebeck coefficient to higher temperatures owing to the suppression of intrinsic carriers. This resulted in an enhancement of both the power factor α^2σ and figure of merit, zT. The applicability of an average effective mass model revealed the optimized electron properties for samples containing Nb. There is evidence in the literature that the average effective mass model i…

Materials scienceEffective mass (solid-state physics)Renewable Energy Sustainability and the EnvironmentElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectAnalytical chemistryElectron dopingFigure of meritGeneral Materials ScienceGeneral ChemistryElectronPower factorJ. Mater. Chem. A
researchProduct

Pressure-restored superconductivity in Cu-substituted FeSe

2011

Copper doping of FeSe destroys its superconductivity at ambient pressure, even at low doping levels. Here we report the pressure-dependent transport and structural properties of Fe${}_{1.01\ensuremath{-}x}$Cu${}_{x}$Se with 3$%$ and 4$%$ Cu doping and find that the superconductivity is restored. Metallic resistivity behavior, absent in Cu-doped FeSe, is also restored. At the low pressure of 1.5 GPa, superconductivity is seen at 6 K for 4$%$ Cu doping, somewhat lower than the 8 K ${T}_{c}$ of undoped FeSe. ${T}_{c}$ reaches its maximum of 31.3 K at 7.8 GPa, lower than the maximum superconducting temperature in the undoped material under pressure (${T}_{c}$ max of 37 K) but still very high. X…

DiffractionSuperconductivityMaterials scienceCondensed matter physicsDopingCondensed Matter PhysicsCopper dopingElectronic Optical and Magnetic MaterialsMetalLattice constantElectrical resistivity and conductivityvisual_artvisual_art.visual_art_mediumAmbient pressurePhysical Review B
researchProduct

Effect of pressure on superconductivity in NaAlSi

2012

The ternary superconductor NaAlSi, isostructural with LiFeAs, the ``111'' iron pnictide superconductor, is investigated under pressure. The structure remains stable up to 15 GPa. Resistivity and susceptibility measurements show an increase of ${T}_{c}$ up to 2 GPa, followed by a decrease until superconductivity disappears at 4.8 GPa. Band structure calculations show that pressure should have a negligible effect on the electronic structure and the Fermi surface and thus the disappearance of superconductivity under pressure must have a different origin. We compare the electronic structure of NaAlSi under pressure with that of nonsuperconducting isostructural NaAlGe.

SuperconductivityMaterials scienceCondensed matter physicsElectrical resistivity and conductivityFermi surfaceElectronic structureIsostructuralCondensed Matter PhysicsElectronic band structureTernary operationPnictogenElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials

2015

N-type XNiSn (X = Ti, Zr, Hf) half-Heusler (HH) compounds possess excellent thermoelectric properties, which are believed to be attributed to their relatively high mobility. However, p-type XNiSn HH compounds have poor figures of merit, zT, compared to XCoSb compounds. This can be traced to the suppression of the magnitude of the thermopower at high temperatures. E_g = 2eS_(max)T_(max) relates the band gap to the thermopower peak. However, from this formula, one would conclude that the band gap of p-type XNiSn solid solutions is only one-third that of n-type XNiSn, which effectively prevents p-type XNiSn HHs from being useful thermoelectric materials. The study of p-type HH Zr_(1−x)Sc_xNiSn…

Thermoelectric transportMaterials scienceCondensed matter physicsBand gapProcess Chemistry and TechnologyElectronThermoelectric materialsMechanics of MaterialsSeebeck coefficientThermoelectric effectFigure of meritGeneral Materials ScienceElectrical and Electronic EngineeringSolid solution
researchProduct

CSD 1784742: Experimental Crystal Structure Determination

2012

Related Article: Leslie Schoop, Lukas Müchler, Jennifer Schmitt, Vadim Ksenofontov, Sergey Medvedev, Jürgen Nuss, Frederick Casper, Martin Jansen, R. J. Cava, Claudia Felser|2012|Phys.Rev.B|86|174522|doi:10.1103/PhysRevB.86.174522

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct