0000000000023159

AUTHOR

Eva Vejmelková

0000-0002-1553-5054

Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity

The paper presents the test results of basalt fiber impact on a compressive and flexural strength, resistance to abrasion and porosity of Reactive Powder Concrete (RPC). The reasons for testing were interesting mechanical properties of basalt fibers, the significant tensile strength and flexural strength, and in particular the resistance to high temperatures, as well as a relatively small number of RPC tests performed with those fibers and different opinions regarding the impact of those fibers on concrete strength. The composition of the concrete mix was optimized to obtain the highest packing density of particles in the composite, based on the optimum particle size distribution curve acc.…

research product

Effect of Cu-Zn coated steel fibers on high temperature resistance of reactive powder concrete

Abstract Even though many studies have reported about the impacts of shape, length and distribution of steel fiber reinforcement on global concrete properties, there is a lack of information about the influence of coating type of steel fibers on high temperature resistance of concrete. This paper describes the effect of Cu-Zn coated steel fibers on selected properties of reactive powder concrete (RPC) after exposure to elevated temperatures. The initial corrosion of zinc in Cu-Zn surface layer is found to be already activated by the alkaline environment of the fresh concrete. The RPC samples reinforced with Cu-Zn coated steel fibers are heated to 600 °C and 1000 °C, and the influence of the…

research product

Mechanical and Basic Physical Properties of High-Strength Concrete Exposed to Elevated Temperatures

In this paper, the effect of elevated temperatures on the mechanical and basic properties of two different newly-designed high-strength concretes is studied. The studied materials were prepared from Portland cement, steel fibers, reactive finely milled quartz powder and quartz sand, silica fume, plasticizer, and with a relatively low water/cement ratio of 0.24. The samples were stored in water environment for the first 28 days of hydration to achieve better mechanical properties. Then, after pre-drying at 105 °C to constant mass, the materials were exposed to elevated temperatures of 600 °C and 1000 °C where they were kept for 2 hours. The basic physical properties, such as matrix density, …

research product