Interactions and structures in polydisperse suspensions of charged spherical colloids
Colloidal suspensions are found a bit everywhere around us, in construction materials,in cosmetics, in food, in biology. They are composed of nanometric or micrometric particlesdispersed in a gas, a liquid or sometimes a solid.This thesis is about colloidal suspensions in ionic solutions, where colloids bear anelectric charge, for example silica particles in an aqueous solution of sodium chloride,at a basic pH. The colloids, here approximated by spheres, can vary significantly in size,which can have an important effect on the behavior of these systems.This study aims at improving the understanding of these charged colloidal suspensionsby theoretical models solved by numerical simulations.of…
Effective pair potential between charged nanoparticles at high volume fractions
Simulations of charged colloidal dispersions are technically challenging. One possible workaround consists in reducing the system to the colloids only, whose interactions are described through an effective pair potential, wf. Still, the determination of wf is difficult mainly because it depends on the colloidal density, ϕ. Here we propose to calculate wf from simulations of a pair of colloids placed in a cubic box with periodic boundary conditions. The variation in ϕ is mimicked by an appropriate change in the concentration of counterions neutralized by an homogeneous background charge. The method is tested at the level of the primitive model. A good description of the structure of the coll…
Packing polydisperse colloids into crystals: when charge-dispersity matters
Monte-Carlo simulations and small-angle x-ray scattering experiments were used to determine the phase diagram of aqueous dispersions of titratable nano-colloids with a moderate size polydispersity over a broad range of monovalent salt concentrations, 0.5 mM $\leq c_s \leq$ 50 mM and volume fractions, $\phi$. Under slow and progressive increase in $\phi$, the dispersions freeze into a face-centered-cubic (fcc) solid followed unexpectedly by the formation of a body centered cubic (bcc) phase before to melt in a glass forming liquid. The simulations are found to predict very well these observations. They suggest that the stabilization of the bcc solid at the expense of the fcc phase at high $\…
Hiding in plain view: Colloidal self-assembly from polydisperse populations.
We report small-angle x-ray scattering (SAXS) experiments on aqueous dispersions of colloidal silica with a broad monomodal size distribution (polydispersity 18%, size 8 nm). Over a range of volume fractions the silica particles segregate to build first one, then two distinct sets of colloidal crystals. These dispersions thus demonstrate fractional crystallization and multiple-phase (bcc, Laves AB$_2$, liquid) coexistence. Their remarkable ability to build complex crystal structures from a polydisperse population originates from the intermediate-range nature of interparticle forces, and suggests routes for designing self-assembling colloidal crystals from the bottom-up.
THERMODYNAMIC ANALYSIS OF HIGH-PRESSURE SONOREACTOR IMPACT OF CHOSEN TECHNICS IN EFFICIENCY AND HEAT RELEASE PROBLEM
International audience