0000000000024032

AUTHOR

Apostolos Polykratis

showing 3 related works from this author

Innate Sensing by Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis

2018

MyD88, an adaptor molecule downstream of innate pathways, plays a significant tumor-promoting role in sporadic intestinal carcinogenesis, which is dependent on its function in the stroma. Here, we show that deletion of MyD88 in intestinal mesenchymal cells (IMCs) significantly reduces Apc-mediated intestinal tumorigenesis. This phenotype is associated with decreased epithelial cell proliferation, altered inflammatory and tumorigenic immune cell infiltration, and modified gene expression similar to complete MyD88 knockout mice. Genetic deletion of TLR4, but not IL1R, in IMCs led to altered molecular profiles and reduction of intestinal tumors similar to the MyD88 deficiency. Ex vivo analysis…

StromaMesenchymal stem cellKnockout mouseGene expressionmedicineTLR4BiologyCarcinogenesismedicine.disease_causePhenotypeEx vivoCell biologySSRN Electronic Journal
researchProduct

Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis.

2017

The mechanisms that regulate cell death and inflammation play an important role in liver disease and cancer. Receptor-interacting protein kinase 1 (RIPK1) induces apoptosis and necroptosis via kinase-dependent mechanisms and exhibits kinase-independent prosurvival and proinflammatory functions. Here, we have used genetic mouse models to study the role of RIPK1 in liver homeostasis, injury, and cancer. While ablating either RIPK1 or RelA in liver parenchymal cells (LPCs) did not cause spontaneous liver pathology, mice with combined deficiency of RIPK1 and RelA in LPCs showed increased hepatocyte apoptosis and developed spontaneous chronic liver disease and cancer that were independent of TNF…

0301 basic medicineProgrammed cell deathLiver tumorCell SurvivalNecroptosisMice TransgenicBiologyChronic liver diseaseProinflammatory cytokine03 medical and health sciencesLiver diseaseMiceLiver Neoplasms ExperimentalmedicineAnimalsDiethylnitrosamineKinase activityTranscription Factor RelAGeneral Medicinemedicine.disease3. Good healthNeoplasm Proteins030104 developmental biologymedicine.anatomical_structureCell Transformation NeoplasticReceptors Tumor Necrosis Factor Type IHepatocyteReceptor-Interacting Protein Serine-Threonine KinasesCancer researchHepatocytesSignal TransductionResearch ArticleThe Journal of clinical investigation
researchProduct

Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis

2019

Summary MyD88, an adaptor molecule downstream of innate pathways, plays a significant tumor-promoting role in sporadic intestinal carcinogenesis of the Apcmin/+ model, which carries a mutation in the Apc gene. Here, we show that deletion of MyD88 in intestinal mesenchymal cells (IMCs) significantly reduces tumorigenesis in this model. This phenotype is associated with decreased epithelial cell proliferation, altered inflammatory and tumorigenic immune cell infiltration, and modified gene expression similar to complete MyD88 knockout mice. Genetic deletion of TLR4, but not interleukin-1 receptor (IL-1R), in IMCs led to altered molecular profiles and reduction of intestinal tumors similar to …

0301 basic medicineCarcinogenesisBiologymedicine.disease_causeArticleGeneral Biochemistry Genetics and Molecular BiologyExtracellular matrixMice03 medical and health sciences0302 clinical medicinemedicinetumor microenvironmentAnimalsHumansReceptorinnate immunityTumor microenvironmentInnate immune systemMesenchymal stem cellCell biologyIntestinesToll-Like Receptor 4030104 developmental biologyMyeloid Differentiation Factor 88Knockout mouseTLR4Carcinogenesiscancer-associated fibroblasts030217 neurology & neurosurgerySignal Transduction
researchProduct