0000000000024061

AUTHOR

Enrique Tajahuerce

0000-0003-1655-4393

Compact all-diffractive setup for spectral synthesis with non-uniform illumination

Optical filters based on diffractive optical elements (DOE) have received increased attention since the development of the first synthetic spectrum as a tool for correlation spectroscopy [1]. The production of a synthetic spectrum requires the design of a DOE that transforms the spectrum associated with the incident light into the spectrum of interest. Based on this procedure, several approaches have been reported in the literature [1–4]. In general, these configurations employ angular dispersion elements for spectrum tailoring, so they are restricted to working off-axis, and most of them need an extra focusing refractive lens.

research product

Real And Positive Filter Based On Circular Harmonic Expansion

A real and positive filter for pattern recognition is presented. The filter, based on the circular harmonic (CH) expansion of a real function, is partially rotation invariant. As it is real and positive, the filter can be recorded on a transparency as an amplitude filter. Computer simulations of character recognition show a partial rotation invariance of about 40°. Optical experiments agree with these results and with acceptable discrimination between different characters. Nevertheless, due to experimental difficulties, the method is onerous for use in general pattern recognition problems.

research product

Compressive single-pixel multispectral Stokes polarimeter

We present a single-pixel system that performs polarimetric multispectral imaging with the aid of compressive sensing techniques. We experimentally obtain the full Stokes spatial distribution of a scene for different spectral channels.

research product

Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays

Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devil's vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated. The angular velocity exhibited by the phase distribution around the focal plane has been visualized, showing an excellent agreement with the simulations. The practical limits of the method, with interest for applications involving particle transfer and manipula…

research product

Real-time acquisition of complex optical fields by binary amplitude modulation

We describe, through simulations and experiments, a real-time wavefront acquisition technique using random binary amplitude masks and an iterative phase retrieval algorithm based on the Fresnel propagator. By using a digital micromirror device, it is possible to recover an unknown complex object by illuminating with this set of masks and simultaneously recording the resulting intensity patterns with a high-speed camera, making this technique suitable for dynamic applications.

research product

Broadband space-variant Fresnel processor

We present a radically new class of optical setup working with white-light illumination, namely, a chromatically compensated processor operating in the Fresnel domain. The optical configuration is a hybrid (diffractive-refractive) three-lens system that exhibits an intermediate achromatic Fresnel plane and an output image plane without chromatic distortion. As a first application of this optical arrangement we develop a parallel space-variant color pattern-recognition experiment with white light.

research product

Transillumination imaging through biological tissue by single-pixel detection

One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection…

research product

Diffractive pulse-front tilt for low-coherence digital holography

We use a diffractive lens to generate the proper pulse-front-tilt to record full-field off-axis holograms with a 10fs laser source. We experimentally demonstrate optical sectioning of three-dimensional samples with a resolution of about 5 microns.

research product

Achromatic fan-out diffractive system for white-light free-space optical interconnects

Abstract A simple and versatile white-light fan-out diffractive system based on the achromatization of the fractional Talbot effect is proposed. This achromatic configuration is able to interconnect a single polychromatic point source with a 2-D array of optoelectronic microdevices with low residual chromatic aberration even for white light. The whole broadband beamsplitter system is formed by two simple diffractive optical elements, a periodic diffractive lenslet array and a diffractive lens, that are made with a direct laser writing technique giving high light efficiency. The focal amplitude distribution corresponding to the lenslet array produces, by free-space propagation, self-replicas…

research product

Hybrid (diffractive-refractive) optical processor for space-variant color pattern recognition

Space-variant optical processing constitutes an interesting approach in information processing techniques when the location of the reference object is of as much importance as its identification. Applications range from machine vision, optical logic, or neural network systems, to cryptography. First results of positional sensitivity were obtained in the past few years by Fresnel transform correlators with coherent light [1,2]. On the other hand, optical Fresnel cor-relators working under broadband point-source illumination allow us to exploit color information of input scenes and present a discrimination ability higher than its monochromatic counterparts. However, the use of the wavelength …

research product

Compressive holography with a single-pixel detector.

This Letter develops a framework for digital holography at optical wavelengths by merging phase-shifting interferometry with single-pixel optical imaging based on compressive sensing. The field diffracted by an input object is sampled by Hadamard patterns with a liquid crystal spatial light modulator. The concept of a single-pixel camera is then adapted to perform interferometric imaging of the sampled diffraction pattern by using a Mach-Zehnder interferometer. Phase-shifting techniques together with the application of a backward light propagation algorithm allow the complex amplitude of the object under scrutiny to be resolved. A proof-of-concept experiment evaluating the phase distributio…

research product

All-incoherent dispersion-compensated optical correlator

We report on a simple, spatially incoherent, wavelength-independent imaging system that, in contrast to the conventional case, exhibits a dispersion-compensated point-spread function. Our hybrid (diffractive-refractive) three-lens imaging configuration thus acts as an all-incoherent dispersion-compensated optical irradiance correlator. So the optical arrangement is well adapted to processing color information (both spatially and temporally incoherent) under natural illumination.

research product

Diffractive optics for high-resolution low-coherence digital holography

We study the properties of the recording of off-axis holograms when a 10 fs pulsed laser is used as illumination source. A proper optical design involving one diffractive lens outside a Michelson interferometer enables the recording of full-field off-axis holograms with high resolution and optical sectioning. We demonstrate our approach with some experimental results that show optical sectioning with a maximum resolution of 3.5 µm. We note that the axial resolution of the technique is reduced up to 9 µm when the object beam travels through a few millimeters of glass due to the pulse broadening along dispersive media.

research product

Scale-tunable optical correlation with natural light

We describe two different scale-tunable optical correlators working under totally incoherent light. They behave as spatially incoherent wavelength-independent imaging systems with an achromatic point-spread function (PSF). In both cases it is possible to adapt the scale of the achromatic PSF, i.e., to modify the scaling factor of the PSF and preserve the chromatic compensation, by one's shifting the input along the optical axis. The remarkable properties of these systems allow us to carry out a scale-tunable color pattern-recognition experiment with natural light.

research product

Quasi-wavelength-independent broadband optical Fourier transformer

The chromatic behaviour associated with diffractive optical elements is exploited herein to design a hybrid (diffractive-refractive) lens triplet showing very great wavelength-compensation capabilities for the Fraunhofer diffraction pattern of any diffracting screen under broadband point-source illumination. Within the paraxial Fresnel diffraction theory, we show that perfect compensation for the axial position of the Fourier transform of the input can be accomplished if we neglect the secondary spectrum of the refractive objective. Simultaneously, an achromatic correction for the scale of the Fraunhofer pattern is achieved. In this way, even for white light, only a low residual transversal…

research product

Dispersion-compensated Lau-like processor

We present a diffractive lens-based optical assembly with which to achieve high-contrast Lau-like interferential fringes with totally incoherent illumination.

research product

Achromatic Fourier transforming properties of a separated diffractive lens doublet: Theory and experiment

The strong chromatic distortion associated with diffractive optical elements is fully exploited to achieve an achromatic optical Fourier transformation under broadband point-source illumination by means of an air-spaced diffractive lens doublet. An analysis of the system is carried out by use of the Fresnel diffraction theory, and the residual secondary spectrum (both axial and transversal) is evaluated. We recognize that the proposed optical architecture allows us to tune the scale factor of the achromatic Fraunhofer diffraction pattern of the input by simply moving the diffracting screen along the optical axis of the system. The performance of our proposed optical setup is verified by sev…

research product

Imaging through scattering media by microstructured illumination

We describe a method to image objects through scattering media based on microstructured illumination. A spatial light modulator is used to project a set of microstructured light patterns onto the sample. The image is retrieved computationally from the photocurrent fluctuations provided by a detector with no spatial structure. We review several optical setups developed in the last years with different illumination strategies and applied to different turbid media. In particular we introduce a new non-invasive optical system based on a reflection configuration. Our technique does not require coherent light, raster scanning, time-gated detection or a-priori calibration processes. Furthermore it…

research product

Structured-light imaging through scattering

We present a structured illumination technique to image objects hidden beneath scattering. The sample is computationally retrieved from a known ensemble of light patterns codified onto a digital micromirror device and photocurrent fluctuations provided by a detector with no spatial resolution. Results of laboratory experiments will be shown. Article not available.

research product

Femtosecond digital lensless holographic microscopy to image biological samples

The use of femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples is presented. A mode-locked Ti:Sa laser that emits ultrashort pulses of 12 fs intensity FWHM, with 800 nm mean wavelength, at 75 MHz repetition rate is used as a light source. For comparison purposes, the light from a light-emitting diode is also used. A section of the head of a drosophila melanogaster fly is studied with both light sources. The experimental results show very different effects of the pinhole size on the spatial resolution with DLHM. Unaware phenomena on the field of the DLHM are analyzed.

research product

Method for determining the proper expansion center and order for Mellin radial harmonic filters

Abstract A method to improve the behaviour of the Mellin radial harmonic (MRH) filters in scale invariant pattern recognition is presented. An algorithm has been introduced to obtain the proper expansion center and order of the MRH development of any object. The procedure consists of the suspression of the non-discriminant uniform background in the energy function of the target. Computer simulations are presented.

research product

Image transmission through dynamic scattering media by single-pixel photodetection

Smart control of light propagation through highly scattering media is a much desired goal with major technological implications. Since interaction of light with highly scattering media results in partial or complete depletion of ballistic photons, it is in principle impossible to transmit images through distances longer than the extinction length. Nevertheless, different methods for image transmission, focusing, and imaging through scattering media by means of wavefront control have been published over the past few years. In this paper we show that single-pixel optical systems, based on compressive detection, can also overcome the fundamental limitation imposed by multiple scattering to suc…

research product

Compressive imaging in scattering media.

One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection…

research product

White-light optical implementation of the fractional fourier transform with adjustable order control.

An optical implementation of the fractional Fourier transform (FRT) with broadband illumination is proposed by use of a single imaging element, namely, a blazed diffractive lens. The setup displays an achromatized version of the FRT of order P of any two-dimensional input function. This fractional order can be tuned continuously by shifting of the input along the optical axis. Our compact and flexible configuration is tested with a chirplike input signal, and the good experimental results obtained support the theory.

research product

Totally incoherent optical processing operations with achromatic diffraction-based setups

We report on a novel family of totally incoherent, chromatic-dispersion compensated hybrid (refractive-diffractive) lens setups for implementing, in the Fraunhofer or in the Fresnel diffraction region, different achromatic diffraction-based processing operations.

research product

Digital Holographic Microscopy: A New Imaging Technique to Quantitatively Explore Cell Dynamics with Nanometer Sensitivity

In the first part of this chapter, we describe how the new concept of digital optics applied to the field of holographic microscopy has made it possible to quantitatively and accurately measure the phase retardation induced on the transmitted wavefront by the observed transparent specimen, allowing thus to develop a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM). In the second part the most relevant DH-QPM applications in the field of cell biology are presented. Particularly, applications taking directly advantage of benefits provided by digital optics particularly off-line autofocusing and extended depth of focus, are outlined. Otherwise, special emphasis …

research product

Optical security and encryption with totally incoherent light

We present a method for securing and encrypting information optically by use of totally incoherent illumination. Encryption is performed with a multichannel optical processor working under natural (both temporal and spatially incoherent) light. In this way, the information that is to be secured can be codified by use of color signals and self-luminous displays. The encryption key is a phase-only mask, providing high security from counterfeiting. Output encrypted information is recorded as an intensity image that can be easily stored and transmitted optically or electrically. Decryption or authentication can also be performed optically or digitally. Experimental results are presented.

research product

High-contrast white-light Lau fringes

We present a new optical assembly with which to achieve Lau fringes with totally incoherent illumination. Gratinglike codification of the spatially incoherent source combined with an achromatic Fresnel diffraction setup allows us to achieve Lau fringe-pattern visibility of almost 100% with broadband light. The white-light character to our proposed setup is in stark contrast to previous monochromatic implementations. Potential implications of this fact are identified.

research product

Roadmap on digital holography [Invited]

This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.

research product

White-light-modified Talbot array illuminator with a variable density of light spots.

A flexible array illuminator, comprising only two conventional optical elements, with a variable density of bright white-light spots is presented. The key to our method is to obtain with a single diffractive lens an achromatic version of different fractional Talbot images, produced by free-space propagation, of the amplitude distribution at the back focal plane of a periodic refractive microlens array under a broadband point-source illumination. Some experimental results of our optical procedure are also shown.

research product

Computational imaging with single-pixel detection: Applications in scattering media

We describe computational imaging techniques based on single-pixel detection providing multidimensional information of an input scene. The key element of the optical recording stage is a spatial light modulator which sequentially generates a set of intensity light patterns to sample the scene. In this way, it is possible to use single-pixel detectors to measure different optical parameters such as the light intensity, the spectral content, the polarization state, or the phase. The spatial distribution of these parameters is then computed by applying the theory of compressive sampling. In particular, in this contribution we present a new method to transmit images through scattering media. We…

research product

OPCPA using beams shaped by diffractive optical elements

Optical parametric chirped pulse amplification (OPCPA) is becoming a widely accepted technique for the generation of high energy ultrashort laser pulses. Flat-top spatial profile pump beams can improve the efficiency of OPCPA, however such beams can be energetically costly to generate and are difficult to implement for low pump energy systems. An elegant and efficient solution to the generation of flat-top spatial profiles is the use of a diffractive optical element (DOE), however these devices distort the geometric phase of the pulses, possibly making them unsuitable for phase coherent interactions such as OPCPA.

research product

White-light array generation with a diffractive lenslet array

Abstract In this paper we present two different optical configurations providing a white-light array generator based on a diffractive lenslet array (DLA). In both cases, starting from a white-light point source we achieve a regularly spaced set of sharp light spots by use of a single DLA and a small number of extra lenses (only one or two). The first optical system permits us to change the separation between the intensity peaks in a tunable way. The second is very compact and consists only of diffractive lens elements. The key question in both set-ups is the use of achromatic Fourier-transform methods. In this way, we achieve, in a first-order approximation, the superposition of the chromat…

research product

Real filter based on Mellin radial harmonics for scale-invariant pattern recognition.

Several theoretical and experimental studies are developed in order to simplify the construction of filters based on Mellin radial harmonics (MRH) for scale-invariant pattern recognition. A real filter based on MRH is designed. The impulse response of the filter is a hermitic function, obtained by a suitable modification of a MRH component. This real filter has the same scale invariance as the conventional complex MRH filters, with the main advantage of its simplicity. Both computer simulations and optical experiments are presented.

research product

Chromatic compensation in the near-field region: shape and size tunability

We report a diffractive-lens triplet with which to achieve wavelength compensation in the near field diffracted by any aperture. On the one hand, the all-diffractive triplet allows us to tune, in a sequential way, the Fresnel-irradiance shape to be achromatized by changing the focal length of one diffractive lens. On the other hand, we can adjust the scale of the chromatically compensated Fresnel diffraction field by shifting the aperture along the optical axis. Within this framework, we present an extremely flexible white-light Fresnel-plane array illuminator based on the kinoform sampling filter. A variable compression ratio and continuous selection of the output pitch are the most appeal…

research product

Hybrid optical-digital method for local-displacement analysis by use of a phase-space representation.

A method for evaluating the local deformation or displacement of an object in speckle metrology is described. The local displacements of the object in one direction are digitally coded in a one-dimensional specklegram. By optically performing the local spectrum of this pattern, one simultaneously achieves information about the local displacement and its spatial position. The good performance of this technique is demonstrated with computer-generated test signals.

research product

White-light implementation of the Wigner-distribution function with an achromatic processor.

A temporally incoherent optical processor that combines diffractive and refractive components is proposed for performing two different operations simultaneously: an achromatic image along an axis and an achromatic one-dimensional Fourier transformation along the orthogonal axis. These properties are properly employed to achieve the achromatic white-light display of the Wigner-distribution function associated with a one-dimensional real signal, with high redundancy and variable scale.

research product

Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis

Recently, using parageometrical optics concepts, a hybrid, diffractive-refractive, lens triplet has been suggested to significantly improve the spatiotemporal resolution of light spots in multifocal processing with femtosecond laser pulses. Here, we carry out a rigorous wave-optics analysis, including the spatiotemporal nature of the wave equation, to elucidate both the spatial extent of the diffractive spots and the temporal duration of the pulse at the output plane. Specifically, we show nearly transform-limited behavior of diffraction maxima. Moreover, the temporal broadening of the pulse is related to the group velocity dispersion, which can be pre-compensated for in practical applicati…

research product

Dynamic wavefront sensing and correction with low-cost twisted nematic spatial light modulators

Off-the-shelf spatial light modulators (SLMs), like twisted nematic liquid crystal displays (TNLCDs) used in projection systems, show some interesting features such as high spatial resolution, easy handling, wide availability, and low cost. We describe a compact adaptive optical system using just one TNLCD to measure and compensate optical aberrations. The current system operates at a frame rate of the order of 10 Hz with a four-level codification scheme. Wavefront estimation is performed through conventional Hartmann–Shack sensing architecture. The system has proved to work properly with a maximum rms aberration of 0. 76 μm and wavefront gradient of 50 rad/mm at a wavelength of 514 nm. The…

research product

Passive Polarimetric Imaging

Passive electro-optical polarimetric imaging is a form of remote sensing in which the properties associated with electromagnetic field orientation are exploited as a means to discriminate between objects in an extended scene. The purpose of this chapter is to introduce some fundamental concepts in the science of imaging polarimetry. These concepts include the Stokes-Mueller description of polarized light, the physical mechanisms that contribute to polarimetric image contrast, a mathematical description of several polarimetric imaging systems, and an example target detection algorithm. Polarimetric image contrast is discussed in terms of reflected, emitted, and scattered light. Special empha…

research product

Wavelength compensation of broadband light diffraction

research product

Optoelectronic Information Encryption with Incoherent Light

research product

Single-shot color digital holography based on the fractional Talbot effect

We present a method for recording on-axis color digital holograms in a single shot. Our system performs parallel phase-shifting interferometry by using the fractional Talbot effect for every chromatic channel simultaneously. A two-dimensional binary amplitude grating is used to generate Talbot periodic phase distributions in the reference beam. The interference patterns corresponding to the three chromatic channels are captured at once at different axial distances. In this scheme, one-shot recording and digital reconstruction allow for real-time measurement. Computer simulations and experimental results confirm the validity of our method.

research product

Single-zone-plate achromatic fresnel-transform setup: Pattern tunability

Abstract White-light point-source illumination results in the chromatic blurring of the optical field diffracted by an aperture. In this paper, broadband dispersion compensation for a continuous set of Fresnel diffraction patterns associated with an arbitrary input transparency is carried out, in a sequential way, by means of a single on-axis blazed zone plate. The input is illuminated with a white-light converging spherical wavefront and the diffractive lens is inserted at the virtual source plane. We recognize that the position of the input along the optical axis permits to achieve a different achromatic Fresnel diffraction pattern with low residual chromatic aberrations. The theory deriv…

research product

Chromatic compensation of broadband light diffraction: ABCD-matrix approach

Compensation of chromatic dispersion for the optical implementation of mathematical transformations has proved to be an important tool in the design of new optical methods for full-color signal processing. A novel approach for designing dispersion-compensated, broadband optical transformers, both Fourier and Fresnel, based on the collimated Fresnel number is introduced. In a second stage, the above framework is fully exploited to achieve the optical implementation of the fractional Fourier transform (FRT) of any diffracting screen with broadband illumination. Moreover, we demonstrate that the amount of shift variance of the dispersion-compensated FRT can be tuned continuously from the spati…

research product

Single-shot digital holography
by use of the fractional Talbot effect

We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally recon…

research product

Hybrid (refractive-diffractive) Fourier processor: A novel optical architecture for achromatic processing with broadband point-source illumination

We report on an achromatic Fourier processor constituted basically by a quasi-wavelength-independent imaging forming system whose first half performs an achromatic Fourier transform of the colour input. The novel optical architecture, only formed by a small number of diffractive and refractive lenses, works under white-light point-source illumination and provides an intermediate achromatic real Fraunhofer plane and a final colour image without chromatic distortion. In this way, our optical processor performs simultaneously, with a single filter, the same spatial filtering operation for all the spectral components of the broadband illumination. The practical capabilities of our proposal are …

research product

Wavelength-compensated Fourier and Fresnel transformers: a unified approach

We recognize that one can adapt any dispersion-compensated broadband optical Fourier transformer to achieve wavelength compensation in the Fresnel diffraction region just by inserting a diffractive lens at the input plane and vice versa. This unification procedure is employed in a second stage in the design of a novel hybrid (diffractive-refractive) optical setup that provides, in a sequential way, nearly wavelength-independent Fresnel diffraction patterns in the irradiance of the object transmittance.

research product

One-shot color digital holography based on the fractional talbot effect

We present a simple method for recording on-axis color digital holograms in a single shot. Our system performs parallel phase-shifting interferometry by using the fractional Talbot effect for every chromatic channel simultaneously. Experimental results are also shown.

research product

Use of balanced detection in single-pixel imaging

We introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel architecture. With this novel detection scheme we are able to recover a real-time video stream in presence of ambient light.

research product

Computational imaging with a balanced detector

Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the sys…

research product

Optical encryption with compressive ghost imaging

Ghost imaging (GI) is a novel technique where the optical information of an object is encoded in the correlation of the intensity fluctuations of a light source. Computational GI (CGI) is a variant of the standard procedure that uses a single bucket detector. Recently, we proposed to use CGI to encrypt and transmit the object information to a remote party [1]. The optical encryption scheme shows compressibility and robustness to eavesdropping attacks. The reconstruction algorithm provides a relative low quality images and requires high acquisitions times. A procedure to overcome such limitations is to combine CGI with compressive sampling (CS), an advanced signal processing theory that expl…

research product

Reconfigurable Shack-Hartmann sensor without moving elements.

We demonstrate wavefront sensing with variable measurement sensitivity and dynamic range by means of a programmable microlens array implemented onto an off-the-shelf twisted nematic liquid crystal display operating as a phase-only spatial light modulator. Electronic control of the optical power of a liquid lens inserted at the aperture stop of a telecentric relay system allows sensing reconfigurability without moving components. Results of laboratory experiments show the ability of the setup to detect both smooth and highly aberrated wavefronts with adequate sensitivity.

research product

Parallel phase-shifting digital holography based on the fractional Talbot effect

A method for recording on-axis single-shot digital holograms based on the self-imaging phenomenon is reported. A simple binary two-dimensional periodic amplitude is used to codify the reference beam in a Mach-Zehnder interferometer, generating a periodic three-step phase distribution with uniform irradiance over the sensor plane by fractional Talbot effect. An image sensor records only one shot of the interference between the light field scattered by the object and the codified parallel reference beam. Images of the object are digitally reconstructed from the digital hologram through the numerical evaluation of the Fresnel diffraction integral. This scheme provides an efficient way to perfo…

research product

Phase imaging via compressive sensing

This communication develops a novel framework for phase imaging at optical wavelength by merging digital lenless phase-shifting holography with single-pixel optical imaging based on compressive sensing.

research product

High-visibility interference fringes with femtosecond laser radiation.

We propose and experimentally demonstrate an interferometer for femtosecond pulses with spectral bandwidth about 100 nm. The scheme is based on a Michelson interferometer with a dispersion compensating module. A diffractive lens serves the purpose of equalizing the optical-path-length difference for a wide range of frequencies. In this way, it is possible to register high-contrast interference fringes with micrometric resolution over the whole area of a commercial CCD sensor for broadband femtosecond pulses.

research product