Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays
Different spatial distributions of optical vortices have been generated and characterized by implementing arrays of devil's vortex lenses in a reconfigurable spatial light modulator. A simple design procedure assigns the preferred position and topological charge value to each vortex in the structure, tuning the desired angular momentum. Distributions with charges and momenta of the opposite sign have been experimentally demonstrated. The angular velocity exhibited by the phase distribution around the focal plane has been visualized, showing an excellent agreement with the simulations. The practical limits of the method, with interest for applications involving particle transfer and manipula…
Valencian Network of Educational Innovation in Optics
[EN] The Valencian Network of Educational Innovation in Optics consists of three groups from the Universitat de València, Universitat Jaume I, and Universitat Politècnica de València. The participants in the network present an extensive background on performing actions to improve teaching practice. They have been involved for years in scientific outreach activities and in a number of educational innovation projects, which have developed innovative teaching materials. With the aim of sharing their experience and enhance their performance, the three groups have decided to join forces to become a Network of Educational Innovation whose main projects are described in this communication.
Diffractive optics for processing ultrashort light pulses
In this work we combine, in principle, two disjoint optical fields, diffractive optics and ultrashort light radiation. This combination allows us to manipulate in a very unconventional manner femtosecond pulses and, on the other hand, to implement a set of novel applications. In our case we have focused our attention on material processing and biophotonics applications.
Experimental generation of high-contrast Talbot images with an ultrashort laser pulse
A femtosecond Ti:sapphire laser oscillator emitting pulses with 800 nm central wavelength, 10.9 fs pulse width, and 75 MHz repetition rate, combined with a dispersion-compensated diffractive system, was used to implement a large-area, high-contrast, broadband optical interference technique based on the Talbot effect. Chromatic artifacts associated with the huge spectrum of the optical source (approximately 150 nm) are compensated for with an air-separated hybrid diffractive-refractive lens doublet. The spatial resolution of the chromatically compensated Talbot images under femtosecond illumination is nearly identical to that achieved under continuous wave monochromatic illumination. Further…
Scale-tunable optical correlation with natural light
We describe two different scale-tunable optical correlators working under totally incoherent light. They behave as spatially incoherent wavelength-independent imaging systems with an achromatic point-spread function (PSF). In both cases it is possible to adapt the scale of the achromatic PSF, i.e., to modify the scaling factor of the PSF and preserve the chromatic compensation, by one's shifting the input along the optical axis. The remarkable properties of these systems allow us to carry out a scale-tunable color pattern-recognition experiment with natural light.
Quasi-wavelength-independent broadband optical Fourier transformer
The chromatic behaviour associated with diffractive optical elements is exploited herein to design a hybrid (diffractive-refractive) lens triplet showing very great wavelength-compensation capabilities for the Fraunhofer diffraction pattern of any diffracting screen under broadband point-source illumination. Within the paraxial Fresnel diffraction theory, we show that perfect compensation for the axial position of the Fourier transform of the input can be accomplished if we neglect the secondary spectrum of the refractive objective. Simultaneously, an achromatic correction for the scale of the Fraunhofer pattern is achieved. In this way, even for white light, only a low residual transversal…
Achromatic Fourier transforming properties of a separated diffractive lens doublet: Theory and experiment
The strong chromatic distortion associated with diffractive optical elements is fully exploited to achieve an achromatic optical Fourier transformation under broadband point-source illumination by means of an air-spaced diffractive lens doublet. An analysis of the system is carried out by use of the Fresnel diffraction theory, and the residual secondary spectrum (both axial and transversal) is evaluated. We recognize that the proposed optical architecture allows us to tune the scale factor of the achromatic Fraunhofer diffraction pattern of the input by simply moving the diffracting screen along the optical axis of the system. The performance of our proposed optical setup is verified by sev…
White-light array generation with a diffractive lenslet array
Abstract In this paper we present two different optical configurations providing a white-light array generator based on a diffractive lenslet array (DLA). In both cases, starting from a white-light point source we achieve a regularly spaced set of sharp light spots by use of a single DLA and a small number of extra lenses (only one or two). The first optical system permits us to change the separation between the intensity peaks in a tunable way. The second is very compact and consists only of diffractive lens elements. The key question in both set-ups is the use of achromatic Fourier-transform methods. In this way, we achieve, in a first-order approximation, the superposition of the chromat…
Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis
Background and Objectives: Nanotechnology has become a significant area of research focused mainly on increasing the antibacterial and mechanical properties of dental materials. The aim of the present systematic review and meta-analysis was to examine and quantitatively analyze the current evidence for the addition of different nanoparticles into dental restorative materials, to determine whether their incorporation increases the antibacterial/antimicrobial properties of the materials. Materials and Methods: A literature search was performed in the Pubmed, Scopus, and Embase databases, up to December 2018, following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) …
Chromatic compensation in the near-field region: shape and size tunability
We report a diffractive-lens triplet with which to achieve wavelength compensation in the near field diffracted by any aperture. On the one hand, the all-diffractive triplet allows us to tune, in a sequential way, the Fresnel-irradiance shape to be achromatized by changing the focal length of one diffractive lens. On the other hand, we can adjust the scale of the chromatically compensated Fresnel diffraction field by shifting the aperture along the optical axis. Within this framework, we present an extremely flexible white-light Fresnel-plane array illuminator based on the kinoform sampling filter. A variable compression ratio and continuous selection of the output pitch are the most appeal…
Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis
Recently, using parageometrical optics concepts, a hybrid, diffractive-refractive, lens triplet has been suggested to significantly improve the spatiotemporal resolution of light spots in multifocal processing with femtosecond laser pulses. Here, we carry out a rigorous wave-optics analysis, including the spatiotemporal nature of the wave equation, to elucidate both the spatial extent of the diffractive spots and the temporal duration of the pulse at the output plane. Specifically, we show nearly transform-limited behavior of diffraction maxima. Moreover, the temporal broadening of the pulse is related to the group velocity dispersion, which can be pre-compensated for in practical applicati…
Limits for the Generation of Ultra-Wideband Signals with the Incoherent-Pulse-Shaping Technique
Recently, an nil-optical technique to generate arbitrary RF waveforms through Altering of the spectral density function of a broadband spectrally incoherent optical source has been introduced. The spectrum is tailored so that the output averaged intensity after large temporal modulation and subsequent distortion in a group-delay-dispersion circuit becomes the user-defined waveform. In general, there is a tradeoff between the spectral width and the signal-to-noise ratio of the output signal. Here, we provide an analytical treatment of the problem based on the optical coherence theory. In particular, we analyze the possibility to employ this technique for ultra-wideband (UWB) applications.
Wavelength compensation of broadband light diffraction
Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation
We propose, analyze and numerically illustrate a photonic-based technique for waveform generation of electrical signals approaching the 50 GHz bandwidth with time apertures as large as a few nanoseconds, by low-frequency, up to 2 GHz, electro-optic phase modulation of time-stretched optical pulses. Synthesis of the electrical waveform relies on phase-to-amplitude conversion of the modulated signal by a group delay dispersion circuit designed to behave as a transversal filter with N taps. Although arbitrary waveform generation capabilities are limited, a wide variety of user-defined signals are numerically demonstrated by appropriately designing the low-frequency signal driving the electro-o…
Wavelength-compensated Fourier and Fresnel transformers: a unified approach
We recognize that one can adapt any dispersion-compensated broadband optical Fourier transformer to achieve wavelength compensation in the Fresnel diffraction region just by inserting a diffractive lens at the input plane and vice versa. This unification procedure is employed in a second stage in the design of a novel hybrid (diffractive-refractive) optical setup that provides, in a sequential way, nearly wavelength-independent Fresnel diffraction patterns in the irradiance of the object transmittance.
Phase imaging via compressive sensing
This communication develops a novel framework for phase imaging at optical wavelength by merging digital lenless phase-shifting holography with single-pixel optical imaging based on compressive sensing.