Acid–base behaviour and binding to double stranded DNA/RNA of benzo[g]phthalazine-based ligands
The affinity and the binding mode of two benzo[g]phthalazine compounds, functionalized with one or two 2-(imidazole-4-yl)-ethylamine groups, to DNA and RNA models have been evaluated by means of UV-Vis, fluorescence and circular dichroism (CD) spectroscopies in combination with viscometry and molecular dynamics. Both organic molecules bind strongly to all nucleic acid models via the intercalation mode in the duplex structure, especially compound 1. Intriguingly, 1 exhibits different emission responses depending on the base composition of duplex DNA/RNAs, which points out the possibility of using it as a base selective nucleic acid probe. Moreover, the acid-base behaviour of both compounds h…
Development of Polyamine‐Substituted Triphenylamine Ligands with High Affinity and Selectivity for G‐Quadruplex DNA
Currently, significant efforts are devoted to designing small molecules able to bind selectively to guanine quadruplexes (G4s). These noncanonical DNA structures are implicated in various important biological processes and have been identified as potential targets for drug development. Previously, a series of triphenylamine (TPA)-based compounds, including macrocyclic polyamines, that displayed high affinity towards G4 DNA were reported. Following this initial work, herein a series of second-generation compounds, in which the central TPA has been functionalised with flexible and adaptive linear polyamines, are presented with the aim of maximising the selectivity towards G4 DNA. The acid-bas…
N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide : a novel reversible antimitotic agent inhibiting cancer cell motility
Este es el post-print que se ha publicado de forma definitiva en: https://www.sciencedirect.com/science/article/abs/pii/S0006295216301423 A series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indol-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescen…
Recognition, Transformation, Detection of Nucleotides and Aqueous Nucleotide-Based Materials
Toward a Rational Design of Polyamine-Based Zinc-Chelating Agents for Cancer Therapies.
In vitro viability assays against a representative panel of human cancer cell lines revealed that polyamines L1a and L5a displayed remarkable activity with IC50 values in the micromolar range. Preliminary research indicated that both compounds promoted G1 cell cycle arrest followed by cellular senescence and apoptosis. The induction of apoptotic cell death involved loss of mitochondrial outer membrane permeability and activation of caspases 3/7. Interestingly, L1a and L5a failed to activate cellular DNA damage response. The high intracellular zinc-chelating capacity of both compounds, deduced from the metal-specific Zinquin assay and ZnL2+ stability constant values in solution, strongly sup…
Initial Biological Assessment of Upconversion Nanohybrids
Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as photoactive inorganic-organic hybrid scaffolds for biological applications. UCNPs, in general, are not considered to be highly toxic materials, but the release of fluorides and lanthanides upon their dissolution may cause cytotoxicity. To identify potential adverse effects of the nanoparticles, dehydrogenase activity of endothelial cells, exposed to various concentrations of the UCNPs, was determined. Da…
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives
Abstract Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-deriv…
In vitro and in vivo antileishmanial and trypanocidal studies of new N-benzene- and N-naphthalenesulfonamide derivatives.
We report in vivo and in vitro antileishmanial and trypanocidal activities of a new series of N-substituted benzene and naphthalenesulfonamides 1-15. Compounds 1-15 were screened in vitro against Leishmania infantum , Leishmania braziliensis , Leishmania guyanensis , Leishmania amazonensis , and Trypanosoma cruzi . Sulfonamides 6e, 10b, and 10d displayed remarkable activity and selectivity toward T. cruzi epimastigotes and amastigotes. 6e showed significant trypanocidal activity on parasitemia in a murine model of acute Chagas disease. Moreover, 6e, 8c, 9c, 12c, and 14d displayed interesting IC50 values against Leishmania spp promastigotes as well as L. amazonensis and L. infantum amastigot…