0000000000024550
AUTHOR
H. El Hamzaoui
Optical frequency domain reflectometer distributed sensing using microstructured pure silica optical fibers under radiations
International audience; We investigated the capability of micro-structured optical fibers to develop multi-functional, remotely-controlled, Optical Frequency Domain Reflectometry (OFDR) distributed fiber based sensors to monitor temperature in nuclear power plants or high energy physics facilities. As pure-silica-core fibers are amongst the most radiation resistant waveguides, we characterized the response of two fibers with the same microstructure, one possessing a core elaborated with F300 Heraeus rod representing the state-of-the art for such fiber technology and one innovative sample based on pure sol-gel silica. Our measurements reveal that the Xray radiations do not affect the capaci…
Spectral properties and lifetime of green emission in γ-ray irradiated bismuth-doped silica photonic crystal fibers
Abstract We report an experimental investigation focused on the green emission detected in γ-ray irradiated Bismuth-doped photonic crystal fibers. Our photoluminescence spectra, recorded at room temperature, provide evidence for the presence of two emission bands both located at ~ 530 nm (2.34 eV). One emission is detected only in the Bi-doped core while the other, is detected in the cladding. These two emissions feature different excitation spectra and a fast and a slow decay lifetime. The origin of the fast emission decay, about ten nanoseconds, is tentatively attributed to a silica intrinsic defect, whereas the slow component, having lifetime of about 2 μs and featuring anti-stokes emiss…
Radiation Response of OFDR Distributed Sensors Based on Microstructured Pure Silica Optical Fibers
International audience; Temperature sensors based on microstructured pure silica optical fibers are investigated by OFDR and RIA performed during X-ray irradiation up to 50kGy dose. The results evidence that the temperature measures are poorly influenced by irradiation (the error being less than 0.3°C). Such a radiation tolerance is relevant for the use of these Rayleigh based sensors in harsh environments.