0000000000024690

AUTHOR

Pedro Pasquini

0000-0002-1689-442x

Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing

Non-unitary neutrino mixing implies an extra CP violating phase that can fake the leptonic Dirac CP phase $\delta_{CP}$ of the simplest three-neutrino mixing benchmark scheme. This would hinder the possibility of probing for CP violation in accelerator-type experiments. We take T2K and T2HK as examples to demonstrate the degeneracy between the "standard" (or "unitary") and "non-unitary" CP phases. We find, under the assumption of non-unitary mixing, that their CP sensitivities severely deteriorate. Fortunately, the TNT2K proposal of supplementing T2(H)K with a $\mu$DAR source for better measurement of $\delta_{CP}$ can partially break the CP degeneracy by probing both $\cos \delta_{CP}$ and…

research product

Bounds on Neutrino-Scalar Yukawa Coupling

General neutrino-scalar couplings appear in many extensions of Standard Model. We can probe these neutrino-scalar couplings by leptonic decay of mesons and from heavy neutrino search. Our analysis improves the present limits to $|g_e|^2<1.9\times 10^{-6}$ and $|g_\mu|^2<1.9\times 10^{-7}$ at 90\% C.L. for massless scalars. For massive scalars we found for the first time the constraints for $g^2_{\alpha}$ couplings to be $10^{-6}-10^{-1}$ respectively for scalar masses between below 1 MeV and for 300 MeV.

research product

Resolving the atmospheric octant by an improved measurement of the reactor angle

Taking into account the current global information on neutrino oscillation parameters we forecast the capabilities of future long baseline experiments such as DUNE and T2HK in settling the atmospheric octant puzzle. We find that a good measurement of the reactor angle $\theta_{13}$ plays a key role in fixing the octant of the atmospheric angle $\theta_{23}$ with such future accelerator neutrino studies.

research product

Cornering the revamped BMV model with neutrino oscillation data

Using the latest global determination of neutrino oscillation parameters from~\cite{deSalas:2017kay} we examine the status of the simplest revamped version of the BMV (Babu-Ma-Valle) model, proposed in~\cite{Morisi:2013qna}. The model predicts a striking correlation between the "poorly determined" atmospheric angle $\theta_{23}$ and CP phase $\delta_{CP}$, leading to either maximal CP violation or none, depending on the preferred $\theta_{23}$ octants. We determine the allowed BMV parameter regions and compare with the general three-neutrino oscillation scenario. We show that in the BMV model the higher octant is possible only at $99\%$ C.L., a stronger rejection than found in the general c…

research product

Neutrino oscillations from warped flavor symmetry: predictions for long baseline experiments T2K, NOvA and DUNE

Here we study the pattern of neutrino oscillations emerging from a previously proposed warped model construction incorporating $\Delta(27)$ flavor symmetry. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of $\theta_{13}$ makes these two parameters nearly proportional, leading to an approximate one-parameter description of neutrino oscillations. There is a sharp fourfold degenerate correlation between $\delta_{CP}$ and the atmospheric mixing angle $\theta_{23}$, so that maximal $\theta_{23}$ also implies maximal leptonic CP violation. The predicted electron neutrino and anti-neutrino appear…

research product

Probing atmospheric mixing and leptonic CP violation in current and future long baseline oscillation experiments

We perform realistic simulations of the current and future long baseline experiments such as T2K, NO$\nu$A, DUNE and T2HK in order to determine their ultimate potential in probing neutrino oscillation parameters. We quantify the potential of these experiments to underpin the octant of the atmospheric angle $\theta_{23}$ as well as the value and sign of the CP phase $\delta_{CP}$.

research product

Exploring the Potential of Short-Baseline Physics at Fermilab

We study the capabilities of the short baseline neutrino program at Fermilab to probe the unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup will substantially improve the current sensitivity on non-unitarity. This would help to remove CP degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study the sensitivity of our proposed setup to light sterile neutrinos for various configurations.

research product