0000000000024710
AUTHOR
Guzmán L. Espejo
Corrigendum: An Unusually Small Singlet-Triplet Gap in a Quinoidal 1,6-Methano[10]annulene Resulting from Baird's 4n π-Electron Triplet Stabilization.
Within the continuum of π-extended quinoidal electronic structures exist molecules that by design can support open-shell diradical structures. The prevailing molecular design criteria for such structures involve proaromatic nature that evolves aromaticity in open-shell diradical resonance structures. A new diradical species built upon a quinoidal methano[10]annulene unit is synthesized and spectroscopically evaluated. The requisite intersystem crossing in the open-shell structure is accompanied by structural reorganization from a contorted Mobius aromatic-like shape in S0 to a more planar shape in the Huckel aromatic-like T1. This stability was attributed to Baird’s Rule which dictates the …
Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals
The consequence of unpaired electrons in organic molecules has fascinated and confounded chemists for over a century. The study of open-shell molecules has been rekindled in recent years as new synthetic methods, improved spectroscopic techniques and powerful computational tools have been brought to bear on this field. Nonetheless, it is the intrinsic instability of the biradical species that limits the practicality of this research. Here we report the synthesis and characterization of a molecule based on the diindeno[b,i]anthracene framework that exhibits pronounced open-shell character yet possesses remarkable stability. The synthetic route is rapid, efficient and possible on the gram sca…
Innentitelbild: An Unusually Small Singlet-Triplet Gap in a Quinoidal 1,6-Methano[10]annulene Resulting from Baird’s 4nπ-Electron Triplet Stabilization (Angew. Chem. 20/2015)
Inside Cover: An Unusually Small Singlet-Triplet Gap in a Quinoidal 1,6-Methano[10]annulene Resulting from Baird’s 4nπ-Electron Triplet Stabilization (Angew. Chem. Int. Ed. 20/2015)
CCDC 1426708: Experimental Crystal Structure Determination
Related Article: Gabriel E. Rudebusch, José L. Zafra, Kjell Jorner, Kotaro Fukuda, Jonathan L. Marshall, Iratxe Arrechea-Marcos, Guzmán L. Espejo, Rocío Ponce Ortiz, Carlos J. Gómez-García, Lev N. Zakharov, Masayoshi Nakano, Henrik Ottosson, Juan Casado, Michael M. Haley|2016|Nature Chemistry|8|753|doi:10.1038/nchem.2518