0000000000024728
AUTHOR
Cricia C. Rodegheri
Observation of Spin Flips with a Single Trapped Proton
Radio-frequency induced spin transitions of one individual proton are observed for the first time. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.
Direct Measurement of the Free Cyclotron Frequency of a Single Particle in a Penning Trap
A measurement scheme for the direct determination of the free cyclotron frequency ${\ensuremath{\nu}}_{c}$ of a single particle stored in a Penning trap is described. The method is based on the dressed states of mode coupling. In this novel measurement scheme both radial modes of the single trapped particle are simultaneously coupled to the axial oscillation mode.
Resolution of Single Spin Flips of a Single Proton
The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.
Direct high-precision measurement of the magnetic moment of the proton
The spin-magnetic moment of the proton $\mu_p$ is a fundamental property of this particle. So far $\mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement…
The quality factor of a superconducting rf resonator in a magnetic field.
The quality factor of a superconducting NbTi resonator at 1.6 MHz in a magnetic field up to 1.2 T as well as its temperature dependence is investigated. A hysteresis effect in the superconducting surface resistance as a function of the magnetic field is observed. An unloaded Q-value of the resonator of 40,500 is achieved at 3.9 K. It is shown that this Q-value is limited by dielectric losses in the FORMVAR insulation of the coils wire. The details of the Q-value optimization are discussed. In the temperature dependence of the Q-value a steep decrease is observed above T approximately = 7.5 K. Finally, the implications of these measurements for real trap experiments are discussed in detail.
Demonstration of the double Penning Trap technique with a single proton
Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…