0000000000024896

AUTHOR

H. Navarro

Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system

One of the main limitations of integral imaging is the narrow viewing angle. This drawback comes from the limited field of view of microlenses during the pickup and display. We propose a novel all-optical technique which allows the substantial increase of the field of view of any microlens and therefore of the viewing angle of integral-imaging displays.

research product

Digital slicing of 3D scenes by Fourier filtering of integral images

We present a novel technique to extract depth information from 3D scenes recorded using an Integral Imaging system. The technique exploits the periodic structure of the recorded integral image to implement a Fourier-domain filtering algorithm. A proper projection of the filtered integral image permits reconstruction of different planes that constitute the 3D scene. The main feature of our method is that the Fourier-domain filtering allows the reduction of out-of-focus information, providing the InI system with real optical sectioning capacity.

research product

High-resolution far-field integral-imaging camera by double snapshot

In multi-view three-dimensional imaging, to capture the elemental images of distant objects, the use of a field-like lens that projects the reference plane onto the microlens array is necessary. In this case, the spatial resolution of reconstructed images is equal to the spatial density of microlenses in the array. In this paper we report a simple method, based on the realization of double snapshots, to double the 2D pixel density of reconstructed scenes. Experiments are reported to support the proposed approach.

research product

Three-dimensional resolvability in an integral imaging system

The concept of three-dimensional (3D) resolvability of an integral imaging system is thoroughly investigated in this research. The general concept of 3D resolution fails to describe the 3D discrimination completely. Then the concepts of the depth-resolution plane and lateral-resolution plane are introduced to show the difference between the conventional 3D spatial resolution and the newly introduced 3D resolvability. Therefore, the different properties of these planes for differentiating lateral spatial variations and axial variations are analyzed in this paper. The theoretical statements are demonstrated experimentally.

research product

Depth-of-Field Enhancement in Integral Imaging by Selective Depth-Deconvolution

One of the major drawbacks of the integral imaging technique is its limited depth of field. Such limitation is imposed by the numerical aperture of the microlenses. In this paper, we propose a method to extend the depth of field of integral imaging systems in the reconstruction stage. The method is based on the combination of deconvolution tools and depth filtering of each elemental image using disparity map information. We demonstrate our proposal presenting digital reconstructions of a 3-D scene focused at different depths with extended depth of field.

research product

Non-Homogeneity of Lateral Resolution in Integral Imaging

We evaluate the lateral resolution in reconstructed integral images. Our analysis takes into account both the diffraction effects in the image capture stage and the lack of homogeneity and isotropy in the reconstruction stage. We have used Monte Carlo simulation in order to assign a value for the resolution limit to any reconstruction plane. We have modelled the resolution behavior. Although in general the resolution limit increases proportionally to the distance to the lens array, there are some periodically distributed singularity planes. The phenomenon is supported by experiments.

research product

Enhanced field-of-view integral imaging display using multi-Köhler illumination.

A common drawback in 3D integral imaging displays is the appearance of pseudoimages beyond the viewing angle. These pseudoimages appear when the light rays coming from each elemental image are not passing through the corresponding microlens, and a set of barriers must be used to avoid this flipping effect. We present a pure optical arrangement based on Köhler illumination to generate these barriers thus avoiding the pseudoimages. The proposed system does not use additional lenses to project the elemental images, so no optical aberrations are introduced. As an added benefit, Köhler illumination provides a higher contrast 3D display. This work was supported in part by the Plan Nacional I + D …

research product

Fuzzy Integral Imaging Camera Calibration for Real Scale 3D Reconstructions

In this paper, we present a quantitative analysis of the error in the reconstruction of a 3D scene which has been captured with Synthetic Aperture Integral Imaging system. The 3D information is obtained from 2D images for which the camera parameters are unknown. The model used for calibrating the Integral Imaging camera setup is based on fuzzy systems. These systems provide the opportunity for modeling of conditions which are inherently imprecisely defined. We demonstrate that the error in the 3D reconstruction not only depends on the number of cameras, but also to their relative positions. Our model is applied to a set of images captured experimentally from a real object. A true-color real…

research product

Elemental images for integral-imaging display

One of the differences between the near-field integral imaging (NInI) and the far-field integral imaging (FInI), is the ratio between number of elemental images and number of pixels per elemental image. While in NInI the 3D information is codified in a small number of elemental images (with many pixels each), in FInI the information is codified in many elemental images (with only a few pixels each). The later codification is similar that the one needed for projecting the InI field onto a pixelated display when aimed to build an InI monitor. For this reason, the FInI cameras are specially adapted for capturing the InI field with display purposes. In this contribution we research the relation…

research product

Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter

This paper presents an acquisition system and a procedure to capture 3D scenes in different spectral bands. The acquisition system is formed by a monochrome camera, and a Liquid Crystal Tunable Filter (LCTF) that allows to acquire images at different spectral bands in the [480, 680]nm wavelength interval. The Synthetic Aperture Integral Imaging acquisition technique is used to obtain the elemental images for each wavelength. These elemental images are used to computationally obtain the reconstruction planes of the 3D scene at different depth planes. The 3D profile of the acquired scene is also obtained using a minimization of the variance of the contribution of the elemental images at each …

research product

3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC).

Previously, we reported a digital technique for formation of real, non-distorted, orthoscopic integral images by direct pickup. However the technique was constrained to the case of symmetric image capture and display systems. Here, we report a more general algorithm which allows the pseudoscopic to orthoscopic transformation with full control over the display parameters so that one can generate a set of synthetic elemental images that suits the characteristics of the Integral-Imaging monitor and permits control over the depth and size of the reconstructed 3D scene.

research product

Three-Dimensional Imaging and Display through Integral Photography

Here, we present a review of the proposals and advances in the field of three-dimensional (3D) imaging acquisition and display made in the last century. The most popular techniques are based on the concept of stereoscopy. However, stereoscopy does not provide real 3D experience, and produces discomfort due to the conflict between convergence and accommodation. For this reason, we focus this paper on integral imaging, which is a technique that permits the codification of 3D information in an array of 2D images obtained from different perspectives. When this array of elemental images is placed in front of an array of microlenses, the perspectives are integrated producing 3D images with full p…

research product

Method to Remedy Image Degradations Due to Facet Braiding in 3D Integral-Imaging Monitors

One of the main challenges in 3D integral imaging (InI) is to overcome the limited depth of field of displayed 3D images. Although this limitation can be due to many factors, the phenomenon that produces the strongest deterioration of out-of-focus images is the facet braiding. In fact, the facet braiding is an essential problem, since InI 3D monitors are not feasible if the braiding problem is not solved. In this paper, we propose a very simple method for overcoming the facet braiding effect which is a serious limitation for realization of 3D TV based on InI. Hybrid experiments are presented to verify the theoretical analysis.

research product

Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus.

The original aim of the integral-imaging concept, reported by Gabriel Lippmann more than a century ago, is the capture of images of 3D scenes for their projection onto an autostereoscopic display. In this paper we report a new algorithm for the efficient generation of microimages for their direct projection onto an integral-imaging monitor. Like our previous algorithm, the smart pseudoscopic-to-orthoscopic conversion (SPOC) algorithm, this algorithm produces microimages ready to produce 3D display with full parallax. However, this new algorithm is much simpler than the previous one, produces microimages free of black pixels, and permits fixing at will, between certain limits, the reference …

research product

Progresses in 3D integral imaging with optical processing

Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

research product

Lightfield recording and reconstruction by integral imaging

Integral imaging is a rising 3D imaging technique that can be considered the incoherent version of holography. In integral imaging the multiperspective information of 3D scenes is stored in a 2D picture. Such picture is nothing but a sampling version of the lightfield emitted by the 3D scene. The recorded lightfield can be used for many purposes. One is the display of 3D color scenes to audiences or much more than one person. Other is the 3D display, with full parallax, in personal monitors, like the screen of a Smartphone, a tablet, or the monitor used by a surgeon in an endoscopic operation. Other important types of applications are connected with the topographic reconstruction, slice by …

research product

Microscopic and macroscopic 3D imaging and display by integral imaging

Integral imaging is a rising 3D imaging technique that can be considered the incoherent version of holography. In integral imaging the multiperspective information of 3D scenes is stored in a 2D picture. Such picture, composed by a set of elemental images, is obtained through a 2D array of microlenses. The elemental-images set can be used for many purposes. One is the display of 3D color scenes to audiences or much more than one person. Other is the 3D display, with full parallax, in personal monitors, like the screen of a smartphone, a tablet, or the monitor used by a surgeon in an endoscopic operation. Other important types of applications are connected with the topographic reconstruction…

research product