0000000000025113

AUTHOR

Michèle Leduc

Interdisciplinary experiments with polarized 3He

Abstract Optical pumping of metastable 3 He atoms is a very efficient method to produce large quantities of nuclear spin-polarized 3 He. Recent developments in mechanical compression of the gas, its storage and transport allow for its flexible use in different fields of physics and applied science. Among these are (1) scattering experiments of polarized beams from polarized 3 He-targets, (2) 3 He as neutron spin filter to polarize neutron beams at research reactors, and (3) polarized 3 He gas inhaled into the lungs to perform magnetic resonance imaging. The paper discusses the different topics along with results obtained in a first round of experiments.

research product

A dense polarized 3He target based on compression of optically pumped gas

Abstract 3 He-gas is spin polarized by the method of optical pumping of metastables and metastability exchange in a low pressure gas discharge. At a pressure of p ≈ 1.5 Torr a volume of 1 l is polarized within about 30 s to a degree of 50% with 300 mW of incident light from an argon-ion laser pumped LNA laser, tuned to the λ = 1.083 μm resonance line. The polarized gas is compressed by a Toepler pump into a target cell of 120 cm 3 volume. In a first attempt a steady state polarization of 30% has been achieved in the target at a pressure of 685 Torr. The paper analyses the essential parameters governing this technique and pilotes its experimental realization.

research product

Realization of a broad band neutron spin filter with compressed, polarized 3He gas

The strongly spin dependent absorption of neutrons in nuclear spin polarized 3He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3He neutron spin filter (NSF) requires high 3He nuclear polarization as well as a filter thickness corresponding to a gas amount of the order of 1 barl. We realized such a filter using direct optical pumping of metastable 3He∗ atoms in a 3He plasma at 1 mbar. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3He atoms. At present 3 × 1018 3He-atoms/s are polarized up to 64%. Subsequent polarization preserving compression by a two stage compressor system enables to prepare NSF cells of ab…

research product

Realization of a broad-band neutron spin filter with compressed, polarized 3He gas

The strongly spin-dependent absorption of neutrons in nuclear spin polarized 3He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3He neutron spin filter (NSF) requires high 3He nuclear polarization as well as a filter thickness corresponding to amount of gas in the order of 1 bar 1. We realized such a filter using direct optical pumping of metastable 3He∗ atoms in a 3He plasma at 1 mb. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3He atoms. At present 3.6 × 1018 3He-atoms s−1 are polarized up to 68%. Subsequent polarization preserving compression by a two-stage compressor system enables to prepare NSF cells o…

research product

The Electric Formfactor of the Neutron Determined by Quasielastic Scattering of Longitudinally Polarized Electrons from 3He and 2D

The recent availability of polarized electron beams at electron accelerator laboratories adds another technique to probing the electromagnetic structure of nuclear matter [1]. The present paper discusses the application of polarized electron scattering to the determination of the electric formfactor of the neutron. Its value at medium energies is only poorly known hitherto. Electron scattering is dominated by interaction with the neutron magnetic moment. Therefore the contribution of the charge distribution to the scattering cross section is scarcely detectable in case of unpolarized collision partners. The elastic scattering of longitudinally polarized electrons from a polarized neutron ta…

research product

Nuclear magnetic resonance imaging with hyperpolarised helium-3

Abstract Summary Background Magnetic resonance imaging (MRI) relies on magnetisation of hydrogen nuclei (protons) of water molecules in tissue as source of the signal. This technique has been valuable for studying tissues that contain significant amounts of water, but biological settings with low proton content, notably the lungs, are difficult to image. We report use of spin-polarised helium-3 for lung MRI. Methods A volunteer inhaled hyperpolarised 3 He to fill the lungs, which were imaged with a conventional MRI detector assembly. The nuclear spin polarisation of helium, and other noble gases, can be greatly enhanced by laser optical pumping and is about 10 5 times larger than the polari…

research product

Very long nuclear relaxation times of spin polarized helium 3 in metal coated cells

Abstract We obtained very long relaxation times T 1 of up to 120 h for the nuclear polarization of an optically pumped helium 3 gas. The glass containers were internally coated with metallic films such as bismuth or cesium. These findings will have applications in the field of helium magnetometers and polarized targets.

research product

First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

Abstract A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 MeV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G E n independent of binding effects to first order. At Q 2 =0.31 ( GeV /c) 2 two asymmetries A ∥ ( S He ∥ q ) and A ⊥ ( S He ⊥ q ) have been measured giving A ∥ =(−7.40±0.73)% and A ⊥ =(0.89±0.30)% . The ratio A ⊥ / A ∥ is independent of the absolute value of the electron and target polarization and yields G E n =0.035±0.012±0.005.

research product

Determination of the neutron electric form factor from the reaction 3 He(e,e'n) at medium momentum transfer

The electric form factor of the neutron GEn has been determined in double polarized exclusive 3He(e,e'n) scattering in quasi–elastic kinematics by measuring asymmetries A⊥, A∥ of the cross section with respect to helicity reversal of the electron, with the nuclear spin being oriented perpendicular to the momentum transfer q in case of A⊥ and parallel in case of A∥. The experiment was performed at the 855 MeV c. w. microtron MAMI at Mainz. The degree of polarization of the electron beam and of the gaseous 3He target were each about 50%. Scattered electrons and neutrons were detected in coincidence by detector arrays covering large solid angles. Quasi–elastic scattering events were reconstruc…

research product