0000000000025277

AUTHOR

Hynek Wichterle

showing 3 related works from this author

Young neurons from medial ganglionic eminence disperse in adult and embryonic brain.

1999

In this study, we identified neuronal precursors that can disperse through adult mammalian brain tissue. Transplanted neuronal precursors from embryonic medial ganglionic eminence (MGE), but not from lateral ganglionic eminence (LGE) or neocortex, dispersed and differentiated into neurons in multiple adult brain regions. In contrast, only LGE cells were able to migrate efficiently from the adult subventricular zone to the olfactory bulb. In embryonic brain slices, MGE cells migrated extensively toward cortex. Our results demonstrate that cells in different germinal regions have unique migratory potentials, and that adult mammalian brain can support widespread dispersion of specific populati…

Ganglionic eminenceSubventricular zoneMice Inbred StrainsNeocortexBrain damageBiologyInterneuron migrationMiceCell MovementFetal Tissue TransplantationCortex (anatomy)medicineAnimalsBrain Tissue TransplantationBrain Tissue TransplantationNeuronsNeocortexGeneral NeuroscienceMedian EminenceOlfactory BulbCorpus StriatumOlfactory bulbmedicine.anatomical_structurenervous systemLac Operonmedicine.symptomNeuroscienceStem Cell TransplantationNature neuroscience
researchProduct

New neurons follow the flow of cerebrospinal fluid in the adult brain

2006

Autores: Sawamoto, K. et al. .- PMID:16410488

Olfactory systemRecombinant Fusion ProteinsSubventricular zoneNerve Tissue ProteinsBiologyCerebral VentriclesLateral ventriclesMiceCerebrospinal fluidNeuroblastCell MovementNeuroblast migrationEpendymamedicineAnimalsBrain Tissue TransplantationCiliaCerebrospinal FluidNeuronsMultidisciplinaryCell PolarityEpithelial CellsAnatomyOlfactory BulbOlfactory bulbmedicine.anatomical_structurenervous systemChoroid PlexusIntercellular Signaling Peptides and ProteinsNeuronNeuroscience
researchProduct

Architecture and cell types of the adult subventricular zone: in search of the stem cells.

1998

Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where t…

NeuronsRostral migratory streamGeneral NeuroscienceStem CellsNeurogenesisSubventricular zoneBiologyOlfactory BulbNeural stem cellCerebral VentriclesNeuroepithelial cellCellular and Molecular Neurosciencemedicine.anatomical_structurenervous systemCell MovementInterneuronsSubependymal zonemedicineAnimalsStem cellNeuroscienceCell DivisionAdult stem cellJournal of neurobiology
researchProduct