The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.
High-Resolution and Low Resource Time To Digital Converters for the KM3NeT Neutrino Telescope
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…
Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.
The Time Calibration System of KM3NeT: The Laser Beacon and the Nanobeacon
The KM3NeT collaboration has started the construction of a deep sea neutrino telescope in the Mediterranean with an instrumented volume of several cubic kilometers. The objective of the KM3NeT telescope is to observe cosmic neutrinos. For this, the detector will consist of a tri-dimensional array of optical modules, each one composed of a pressure resistant glass sphere housing 31 small area photomultipliers. An important element of the KM3NeT detector is the system for the relative time calibration between optical modules with a precision of about 1 ns. The system comprises two independent devices: a nanobeacon inside each optical module for calibration of optical modules in the same verti…