0000000000025313

AUTHOR

Ranko Richert

Heterogeneous and Homogeneous Diffusivity in an Ion-Conducting Glass

The nature of ion diffusivity in the vitreous conductor 2Ca NO3 2 ? 3KNO3 (CKN) was studied by nonresonant dielectric hole burning. Spectral holes in the electric field relaxation are probed subsequent to a high electric sinusoidal burn field. For sufficiently high pump frequencies we are able to induce spectrally selective modifications in the relaxation of the electric modulus, indicating that ionic diffusivity is a spatially varying quantity in glassy CKN. Homogeneous behavior occurs in the regime of low pump frequencies, in which the resistivity approaches its steady state value. Thus, longer-ranged ionic motions lead to a spatial averaging over the heterogeneity of local ion diffusivit…

research product

Capacitive scanning dilatometry and frequency-dependent thermal expansion of polymer films

The dilatometric properties of polymer films near and above their glass-transition temperatures were explored using capacitive high-frequency detection in temperature ramping as well as in harmonic temperature cycling experiments. The broad applicability of capacitive scanning dilatometry is demonstrated by the investigation of macromolecular systems of vastly different polarity such as polystyrene, polybutadiene, and polyvinylacetate. From temperature cycling experiments the real and imaginary parts of the frequency-dependent thermal-expansion coefficient are determined in the sub-Hz regime.

research product

Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments

Several experimental methods feature the potential to distinguish between slow and fast contributions to the non-exponential, ensemble averaged primary response in glass-forming materials. Some of these techniques are based on the selection of subensembles using multi-dimensional nuclear magnetic resonance, optical bleaching, and non-resonant spectral hole burning. Others, such as the time-dependent solvation spectroscopy, measure microscopic responses induced by local perturbations. Using several of these methods it could be demonstrated for various glass-forming materials that the non-exponential relaxation results from a superposition of dynamically distinguishable entities. The experime…

research product

Dynamic thermal expansivity near the glass transition

Dielectric techniques were used to investigate the thermal expansivity of polystyrene films. Capacitive scanning dilatometry (CSD) employs temperature ramping in order to monitor the non-linear structural relaxation in the glass transformation range and to quantify liquid fragility. In the linear response regime, the complex thermal expansivity is obtained as a function of the temperature cycling frequency and is observed to reflect the structural relaxation.

research product