An algebraic approach to the Tavis-Cummings problem
An algebraic method is introduced for an analytical solution of the eigenvalue problem of the Tavis-Cummings (TC) Hamiltonian, based on polynomially deformed su(2), i.e. su_n(2), algebras. In this method the eigenvalue problem is solved in terms of a specific perturbation theory, developed here up to third order. Generalization to the N-atom case of the Rabi frequency and dressed states is also provided. A remarkable enhancement of spontaneous emission of N atoms in a resonator is found to result from collective effects.