0000000000025805

AUTHOR

Georgios Kremastiotis

Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin

AbstractCarfilzomib (Cfz), an irreversible proteasome inhibitor licensed for relapsed/refractory myeloma, is associated with cardiotoxicity in humans. We sought to establish the optimal protocol of Cfz-induced cardiac dysfunction, to investigate the underlying molecular-signaling and, based on the findings, to evaluate the cardioprotective potency of metformin (Met). Mice were randomized into protocols 1 and 2 (control and Cfz for 1 and 2 consecutive days, respectively); protocols 3 and 4 (control and alternate doses of Cfz for 6 and 14 days, respectively); protocols 5A and 5B (control and Cfz, intermittent doses on days 0, 1 [5A] and 0, 1, 7, and 8 [5B] for 13 days); protocols 6A and 6B (p…

research product

Metformin Restores AMPK Alpha-Mediated Autophagy and Prevents Carfilzomib-Induced Cardiotoxicity In Vivo

Abstract Introduction: Carfilzomib (Cfz) significantly prolongs progression-free survival in relapsed or refractory multiple myeloma patients, as highlighted in the ENDEAVOR trial. However, Cfz has high incidences of cardiotoxicity and heart failure, leading to treatment cessation. Thus, there is an imperative need for preventive therapies. The study aimed to i) establish an in vivo Cfz cardiotoxicity protocol, ii) investigate the molecular mechanism, identify molecular targets and iii) based on initial results, investigate the potential protective effect and mechanism of Metformin (Met). Methods: Male, C57BL/6 mice, were randomized in groups as following: Acute protocol (6 days): Control (…

research product