0000000000025875
AUTHOR
C. Leicht
Generation of energy selective excitations in quantum hall edge states
We operate an on-demand source of single electrons in high perpendicular magnetic fields up to 30T, corresponding to a filling factor below 1/3. The device extracts and emits single charges at a tunable energy from and to a two-dimensional electron gas, brought into well defined integer and fractional quantum Hall (QH) states. It can therefore be used for sensitive electrical transport studies, e.g. of excitations and relaxation processes in QH edge states.
Single-parameter quantized charge pumping in high magnetic fields
We study single-parameter quantized charge pumping via a semiconductor quantum dot in high magnetic fields. The quantum dot is defined between two top gates in an AlGaAs/GaAs heterostructure. Application of an oscillating voltage to one of the gates leads to pumped current plateaus in the gate characteristic, corresponding to controlled transfer of integer multiples of electrons per cycle. In a perpendicular-to-plane magnetic field the plateaus become more pronounced indicating an improved current quantization. Current quantization is sustained up to magnetic fields where full spin polarization of the device can be expected.
Constructive role of non-adiabaticity for quantized charge pumping
We investigate a recently developed scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated nanowire. It has been shown theoretically that non-adiabaticity is fundamentally required to realize single-parameter pumping, while in previous multi-parameter pumping schemes it caused unwanted and less controllable currents. In this paper we demonstrate experimentally the constructive and destructive role of non-adiabaticity by analysing the pumping current over a broad frequency range.